| L(s)  = 1 | − 2·3-s     + 5-s         + 9-s     − 11-s     − 2·13-s     − 2·15-s         − 2·19-s         − 4·23-s     + 25-s     + 4·27-s     + 2·29-s     + 8·31-s     + 2·33-s         + 10·37-s     + 4·39-s         + 4·43-s     + 45-s     + 8·47-s             + 6·53-s     − 55-s     + 4·57-s     − 6·59-s     + 2·61-s         − 2·65-s     − 4·67-s     + 8·69-s         + 4·73-s  + ⋯ | 
| L(s)  = 1 | − 1.15·3-s     + 0.447·5-s         + 1/3·9-s     − 0.301·11-s     − 0.554·13-s     − 0.516·15-s         − 0.458·19-s         − 0.834·23-s     + 1/5·25-s     + 0.769·27-s     + 0.371·29-s     + 1.43·31-s     + 0.348·33-s         + 1.64·37-s     + 0.640·39-s         + 0.609·43-s     + 0.149·45-s     + 1.16·47-s             + 0.824·53-s     − 0.134·55-s     + 0.529·57-s     − 0.781·59-s     + 0.256·61-s         − 0.248·65-s     − 0.488·67-s     + 0.963·69-s         + 0.468·73-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 86240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 86240 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(\approx\) | \(1.565543204\) | 
    
      | \(L(\frac12)\) | \(\approx\) | \(1.565543204\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 | \( 1 \) |  | 
|  | 5 | \( 1 - T \) |  | 
|  | 7 | \( 1 \) |  | 
|  | 11 | \( 1 + T \) |  | 
| good | 3 | \( 1 + 2 T + p T^{2} \) | 1.3.c | 
|  | 13 | \( 1 + 2 T + p T^{2} \) | 1.13.c | 
|  | 17 | \( 1 + p T^{2} \) | 1.17.a | 
|  | 19 | \( 1 + 2 T + p T^{2} \) | 1.19.c | 
|  | 23 | \( 1 + 4 T + p T^{2} \) | 1.23.e | 
|  | 29 | \( 1 - 2 T + p T^{2} \) | 1.29.ac | 
|  | 31 | \( 1 - 8 T + p T^{2} \) | 1.31.ai | 
|  | 37 | \( 1 - 10 T + p T^{2} \) | 1.37.ak | 
|  | 41 | \( 1 + p T^{2} \) | 1.41.a | 
|  | 43 | \( 1 - 4 T + p T^{2} \) | 1.43.ae | 
|  | 47 | \( 1 - 8 T + p T^{2} \) | 1.47.ai | 
|  | 53 | \( 1 - 6 T + p T^{2} \) | 1.53.ag | 
|  | 59 | \( 1 + 6 T + p T^{2} \) | 1.59.g | 
|  | 61 | \( 1 - 2 T + p T^{2} \) | 1.61.ac | 
|  | 67 | \( 1 + 4 T + p T^{2} \) | 1.67.e | 
|  | 71 | \( 1 + p T^{2} \) | 1.71.a | 
|  | 73 | \( 1 - 4 T + p T^{2} \) | 1.73.ae | 
|  | 79 | \( 1 - 8 T + p T^{2} \) | 1.79.ai | 
|  | 83 | \( 1 - 6 T + p T^{2} \) | 1.83.ag | 
|  | 89 | \( 1 + p T^{2} \) | 1.89.a | 
|  | 97 | \( 1 - 12 T + p T^{2} \) | 1.97.am | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−14.02670833946742, −13.30002887208011, −12.88901575710804, −12.27880889707227, −11.96042760365849, −11.51626701200888, −10.90738873467040, −10.41678775458071, −10.14577189902810, −9.514346543538936, −8.973816487271336, −8.319155002494464, −7.797402089079600, −7.248926206622457, −6.513528619731993, −6.158905204102343, −5.773294494570597, −5.148343605261338, −4.567468820809185, −4.230603014696795, −3.236986387630693, −2.517806995372923, −2.100060978833947, −0.9893508445708529, −0.5240549150018642, 
0.5240549150018642, 0.9893508445708529, 2.100060978833947, 2.517806995372923, 3.236986387630693, 4.230603014696795, 4.567468820809185, 5.148343605261338, 5.773294494570597, 6.158905204102343, 6.513528619731993, 7.248926206622457, 7.797402089079600, 8.319155002494464, 8.973816487271336, 9.514346543538936, 10.14577189902810, 10.41678775458071, 10.90738873467040, 11.51626701200888, 11.96042760365849, 12.27880889707227, 12.88901575710804, 13.30002887208011, 14.02670833946742
