Properties

Label 2-86240-1.1-c1-0-13
Degree $2$
Conductor $86240$
Sign $1$
Analytic cond. $688.629$
Root an. cond. $26.2417$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 5-s + 9-s − 11-s − 2·13-s − 2·15-s − 2·19-s − 4·23-s + 25-s + 4·27-s + 2·29-s + 8·31-s + 2·33-s + 10·37-s + 4·39-s + 4·43-s + 45-s + 8·47-s + 6·53-s − 55-s + 4·57-s − 6·59-s + 2·61-s − 2·65-s − 4·67-s + 8·69-s + 4·73-s + ⋯
L(s)  = 1  − 1.15·3-s + 0.447·5-s + 1/3·9-s − 0.301·11-s − 0.554·13-s − 0.516·15-s − 0.458·19-s − 0.834·23-s + 1/5·25-s + 0.769·27-s + 0.371·29-s + 1.43·31-s + 0.348·33-s + 1.64·37-s + 0.640·39-s + 0.609·43-s + 0.149·45-s + 1.16·47-s + 0.824·53-s − 0.134·55-s + 0.529·57-s − 0.781·59-s + 0.256·61-s − 0.248·65-s − 0.488·67-s + 0.963·69-s + 0.468·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 86240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 86240 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(86240\)    =    \(2^{5} \cdot 5 \cdot 7^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(688.629\)
Root analytic conductor: \(26.2417\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 86240,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.565543204\)
\(L(\frac12)\) \(\approx\) \(1.565543204\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 - T \)
7 \( 1 \)
11 \( 1 + T \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 12 T + p T^{2} \) 1.97.am
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.02670833946742, −13.30002887208011, −12.88901575710804, −12.27880889707227, −11.96042760365849, −11.51626701200888, −10.90738873467040, −10.41678775458071, −10.14577189902810, −9.514346543538936, −8.973816487271336, −8.319155002494464, −7.797402089079600, −7.248926206622457, −6.513528619731993, −6.158905204102343, −5.773294494570597, −5.148343605261338, −4.567468820809185, −4.230603014696795, −3.236986387630693, −2.517806995372923, −2.100060978833947, −0.9893508445708529, −0.5240549150018642, 0.5240549150018642, 0.9893508445708529, 2.100060978833947, 2.517806995372923, 3.236986387630693, 4.230603014696795, 4.567468820809185, 5.148343605261338, 5.773294494570597, 6.158905204102343, 6.513528619731993, 7.248926206622457, 7.797402089079600, 8.319155002494464, 8.973816487271336, 9.514346543538936, 10.14577189902810, 10.41678775458071, 10.90738873467040, 11.51626701200888, 11.96042760365849, 12.27880889707227, 12.88901575710804, 13.30002887208011, 14.02670833946742

Graph of the $Z$-function along the critical line