Properties

Label 2-8400-1.1-c1-0-1
Degree $2$
Conductor $8400$
Sign $1$
Analytic cond. $67.0743$
Root an. cond. $8.18989$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 7-s + 9-s − 2·11-s − 4·13-s − 6·17-s − 6·19-s + 21-s − 8·23-s − 27-s − 2·29-s − 10·31-s + 2·33-s − 2·37-s + 4·39-s + 10·41-s − 4·43-s − 8·47-s + 49-s + 6·51-s − 4·53-s + 6·57-s + 8·59-s + 6·61-s − 63-s + 12·67-s + 8·69-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.377·7-s + 1/3·9-s − 0.603·11-s − 1.10·13-s − 1.45·17-s − 1.37·19-s + 0.218·21-s − 1.66·23-s − 0.192·27-s − 0.371·29-s − 1.79·31-s + 0.348·33-s − 0.328·37-s + 0.640·39-s + 1.56·41-s − 0.609·43-s − 1.16·47-s + 1/7·49-s + 0.840·51-s − 0.549·53-s + 0.794·57-s + 1.04·59-s + 0.768·61-s − 0.125·63-s + 1.46·67-s + 0.963·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8400\)    =    \(2^{4} \cdot 3 \cdot 5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(67.0743\)
Root analytic conductor: \(8.18989\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2743079172\)
\(L(\frac12)\) \(\approx\) \(0.2743079172\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 + T \)
good11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 12 T + p T^{2} \) 1.73.am
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.78658425695217681289174974487, −6.91769210168230530119950486753, −6.52255862189646900458465165687, −5.69891040102091247679907360501, −5.06763303548809211709491905402, −4.28492920944489376558236890239, −3.68706754584159092001777611990, −2.33362332529370681569023240079, −2.03385004077130300657048608042, −0.24338728321867744055440527565, 0.24338728321867744055440527565, 2.03385004077130300657048608042, 2.33362332529370681569023240079, 3.68706754584159092001777611990, 4.28492920944489376558236890239, 5.06763303548809211709491905402, 5.69891040102091247679907360501, 6.52255862189646900458465165687, 6.91769210168230530119950486753, 7.78658425695217681289174974487

Graph of the $Z$-function along the critical line