Properties

Label 2-8330-1.1-c1-0-91
Degree $2$
Conductor $8330$
Sign $1$
Analytic cond. $66.5153$
Root an. cond. $8.15569$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 2·3-s + 4-s − 5-s + 2·6-s + 8-s + 9-s − 10-s − 5·11-s + 2·12-s + 13-s − 2·15-s + 16-s − 17-s + 18-s + 3·19-s − 20-s − 5·22-s + 7·23-s + 2·24-s + 25-s + 26-s − 4·27-s − 2·29-s − 2·30-s + 32-s − 10·33-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.15·3-s + 1/2·4-s − 0.447·5-s + 0.816·6-s + 0.353·8-s + 1/3·9-s − 0.316·10-s − 1.50·11-s + 0.577·12-s + 0.277·13-s − 0.516·15-s + 1/4·16-s − 0.242·17-s + 0.235·18-s + 0.688·19-s − 0.223·20-s − 1.06·22-s + 1.45·23-s + 0.408·24-s + 1/5·25-s + 0.196·26-s − 0.769·27-s − 0.371·29-s − 0.365·30-s + 0.176·32-s − 1.74·33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8330 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8330 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8330\)    =    \(2 \cdot 5 \cdot 7^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(66.5153\)
Root analytic conductor: \(8.15569\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8330,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.365551010\)
\(L(\frac12)\) \(\approx\) \(4.365551010\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
5 \( 1 + T \)
7 \( 1 \)
17 \( 1 + T \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
11 \( 1 + 5 T + p T^{2} \) 1.11.f
13 \( 1 - T + p T^{2} \) 1.13.ab
19 \( 1 - 3 T + p T^{2} \) 1.19.ad
23 \( 1 - 7 T + p T^{2} \) 1.23.ah
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 11 T + p T^{2} \) 1.37.al
41 \( 1 - 7 T + p T^{2} \) 1.41.ah
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 + T + p T^{2} \) 1.53.b
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 16 T + p T^{2} \) 1.73.aq
79 \( 1 + 6 T + p T^{2} \) 1.79.g
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.81194905020727084935013725602, −7.35917900829736320360424374855, −6.42142687633780071611374217328, −5.55427928050663616725523378816, −4.96683348490974095539738901714, −4.14095418373686422546281131002, −3.38670772128840473483603551547, −2.74555017087184835790545902374, −2.27702993700563300759591554228, −0.857400564408475905491731723279, 0.857400564408475905491731723279, 2.27702993700563300759591554228, 2.74555017087184835790545902374, 3.38670772128840473483603551547, 4.14095418373686422546281131002, 4.96683348490974095539738901714, 5.55427928050663616725523378816, 6.42142687633780071611374217328, 7.35917900829736320360424374855, 7.81194905020727084935013725602

Graph of the $Z$-function along the critical line