Properties

Label 2-8330-1.1-c1-0-76
Degree $2$
Conductor $8330$
Sign $1$
Analytic cond. $66.5153$
Root an. cond. $8.15569$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 2·3-s + 4-s − 5-s − 2·6-s − 8-s + 9-s + 10-s − 2·11-s + 2·12-s + 6·13-s − 2·15-s + 16-s − 17-s − 18-s + 8·19-s − 20-s + 2·22-s − 2·23-s − 2·24-s + 25-s − 6·26-s − 4·27-s + 6·29-s + 2·30-s + 2·31-s − 32-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.15·3-s + 1/2·4-s − 0.447·5-s − 0.816·6-s − 0.353·8-s + 1/3·9-s + 0.316·10-s − 0.603·11-s + 0.577·12-s + 1.66·13-s − 0.516·15-s + 1/4·16-s − 0.242·17-s − 0.235·18-s + 1.83·19-s − 0.223·20-s + 0.426·22-s − 0.417·23-s − 0.408·24-s + 1/5·25-s − 1.17·26-s − 0.769·27-s + 1.11·29-s + 0.365·30-s + 0.359·31-s − 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8330 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8330 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8330\)    =    \(2 \cdot 5 \cdot 7^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(66.5153\)
Root analytic conductor: \(8.15569\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8330,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.200299754\)
\(L(\frac12)\) \(\approx\) \(2.200299754\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 + T \)
7 \( 1 \)
17 \( 1 + T \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 14 T + p T^{2} \) 1.71.ao
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.092484353502950576683404302437, −7.42717455099730047106034522764, −6.61079142784416346954959499226, −5.88360940200955664519328599726, −5.00461346323319973754488181716, −3.95114382547935376964949865766, −3.25494214016387779422541683820, −2.78847960718251599716771509585, −1.71450635227290170426580654073, −0.78804658243269606528154158871, 0.78804658243269606528154158871, 1.71450635227290170426580654073, 2.78847960718251599716771509585, 3.25494214016387779422541683820, 3.95114382547935376964949865766, 5.00461346323319973754488181716, 5.88360940200955664519328599726, 6.61079142784416346954959499226, 7.42717455099730047106034522764, 8.092484353502950576683404302437

Graph of the $Z$-function along the critical line