Properties

Label 2-8330-1.1-c1-0-68
Degree $2$
Conductor $8330$
Sign $1$
Analytic cond. $66.5153$
Root an. cond. $8.15569$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 5-s − 8-s − 3·9-s + 10-s + 6·11-s + 2·13-s + 16-s − 17-s + 3·18-s + 8·19-s − 20-s − 6·22-s − 4·23-s + 25-s − 2·26-s + 10·29-s + 8·31-s − 32-s + 34-s − 3·36-s − 8·37-s − 8·38-s + 40-s + 6·41-s + 4·43-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.447·5-s − 0.353·8-s − 9-s + 0.316·10-s + 1.80·11-s + 0.554·13-s + 1/4·16-s − 0.242·17-s + 0.707·18-s + 1.83·19-s − 0.223·20-s − 1.27·22-s − 0.834·23-s + 1/5·25-s − 0.392·26-s + 1.85·29-s + 1.43·31-s − 0.176·32-s + 0.171·34-s − 1/2·36-s − 1.31·37-s − 1.29·38-s + 0.158·40-s + 0.937·41-s + 0.609·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8330 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8330 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8330\)    =    \(2 \cdot 5 \cdot 7^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(66.5153\)
Root analytic conductor: \(8.15569\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8330,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.533331093\)
\(L(\frac12)\) \(\approx\) \(1.533331093\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 + T \)
7 \( 1 \)
17 \( 1 + T \)
good3 \( 1 + p T^{2} \) 1.3.a
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 10 T + p T^{2} \) 1.47.k
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 + 14 T + p T^{2} \) 1.83.o
89 \( 1 + 16 T + p T^{2} \) 1.89.q
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.968956062762538663264856994410, −7.13152010320404877000395086042, −6.46799927611923595864478455072, −6.01378114894445963131008474598, −5.05354943766348752376202857243, −4.13034705332807197479813258127, −3.37786152082892232946548178321, −2.71551189403222211564421296461, −1.44555906992270630072636016668, −0.74549733914556493987755618115, 0.74549733914556493987755618115, 1.44555906992270630072636016668, 2.71551189403222211564421296461, 3.37786152082892232946548178321, 4.13034705332807197479813258127, 5.05354943766348752376202857243, 6.01378114894445963131008474598, 6.46799927611923595864478455072, 7.13152010320404877000395086042, 7.968956062762538663264856994410

Graph of the $Z$-function along the critical line