Properties

Label 2-8208-1.1-c1-0-43
Degree $2$
Conductor $8208$
Sign $1$
Analytic cond. $65.5412$
Root an. cond. $8.09575$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·7-s + 5·11-s − 4·13-s + 2·17-s + 19-s − 8·23-s − 5·25-s + 29-s + 3·31-s − 3·41-s + 10·43-s + 9·47-s − 3·49-s + 13·53-s − 4·59-s + 5·61-s + 67-s + 6·71-s + 7·73-s + 10·77-s + 11·79-s − 15·83-s − 3·89-s − 8·91-s + 8·97-s + 8·101-s + 8·103-s + ⋯
L(s)  = 1  + 0.755·7-s + 1.50·11-s − 1.10·13-s + 0.485·17-s + 0.229·19-s − 1.66·23-s − 25-s + 0.185·29-s + 0.538·31-s − 0.468·41-s + 1.52·43-s + 1.31·47-s − 3/7·49-s + 1.78·53-s − 0.520·59-s + 0.640·61-s + 0.122·67-s + 0.712·71-s + 0.819·73-s + 1.13·77-s + 1.23·79-s − 1.64·83-s − 0.317·89-s − 0.838·91-s + 0.812·97-s + 0.796·101-s + 0.788·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 8208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 8208 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(8208\)    =    \(2^{4} \cdot 3^{3} \cdot 19\)
Sign: $1$
Analytic conductor: \(65.5412\)
Root analytic conductor: \(8.09575\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 8208,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.354691456\)
\(L(\frac12)\) \(\approx\) \(2.354691456\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
19 \( 1 - T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 - 5 T + p T^{2} \) 1.11.af
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - T + p T^{2} \) 1.29.ab
31 \( 1 - 3 T + p T^{2} \) 1.31.ad
37 \( 1 + p T^{2} \) 1.37.a
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 - 9 T + p T^{2} \) 1.47.aj
53 \( 1 - 13 T + p T^{2} \) 1.53.an
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 5 T + p T^{2} \) 1.61.af
67 \( 1 - T + p T^{2} \) 1.67.ab
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 7 T + p T^{2} \) 1.73.ah
79 \( 1 - 11 T + p T^{2} \) 1.79.al
83 \( 1 + 15 T + p T^{2} \) 1.83.p
89 \( 1 + 3 T + p T^{2} \) 1.89.d
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.72447849884197959664571698094, −7.27839377802426734654573428776, −6.37664365578384530277969522357, −5.78385797725944969501811721071, −4.99962843208792518629858962956, −4.15847532233669585019542958490, −3.75465881913702910471207817845, −2.48728183627205780152279628230, −1.80630547274792375850547470308, −0.77404720552156091863312297047, 0.77404720552156091863312297047, 1.80630547274792375850547470308, 2.48728183627205780152279628230, 3.75465881913702910471207817845, 4.15847532233669585019542958490, 4.99962843208792518629858962956, 5.78385797725944969501811721071, 6.37664365578384530277969522357, 7.27839377802426734654573428776, 7.72447849884197959664571698094

Graph of the $Z$-function along the critical line