Properties

Label 2-81733-1.1-c1-0-2
Degree $2$
Conductor $81733$
Sign $-1$
Analytic cond. $652.641$
Root an. cond. $25.5468$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·4-s − 7-s − 2·9-s − 3·11-s − 2·12-s + 4·13-s + 4·16-s + 6·17-s − 2·19-s − 21-s − 6·23-s − 5·25-s − 5·27-s + 2·28-s + 6·29-s + 4·31-s − 3·33-s + 4·36-s + 37-s + 4·39-s + 9·41-s − 8·43-s + 6·44-s + 4·48-s − 6·49-s + 6·51-s + ⋯
L(s)  = 1  + 0.577·3-s − 4-s − 0.377·7-s − 2/3·9-s − 0.904·11-s − 0.577·12-s + 1.10·13-s + 16-s + 1.45·17-s − 0.458·19-s − 0.218·21-s − 1.25·23-s − 25-s − 0.962·27-s + 0.377·28-s + 1.11·29-s + 0.718·31-s − 0.522·33-s + 2/3·36-s + 0.164·37-s + 0.640·39-s + 1.40·41-s − 1.21·43-s + 0.904·44-s + 0.577·48-s − 6/7·49-s + 0.840·51-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81733 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81733 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81733\)    =    \(37 \cdot 47^{2}\)
Sign: $-1$
Analytic conductor: \(652.641\)
Root analytic conductor: \(25.5468\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 81733,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad37 \( 1 - T \)
47 \( 1 \)
good2 \( 1 + p T^{2} \) 1.2.a
3 \( 1 - T + p T^{2} \) 1.3.ab
5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
43 \( 1 + 8 T + p T^{2} \) 1.43.i
53 \( 1 + 3 T + p T^{2} \) 1.53.d
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 15 T + p T^{2} \) 1.71.p
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 9 T + p T^{2} \) 1.83.aj
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.23651260162356, −13.71166188251753, −13.18627348306374, −13.08114592558208, −12.25062832353473, −11.83260105127406, −11.32134810674225, −10.46415776776442, −10.11100324293829, −9.787273805771055, −9.157713461173347, −8.514066172295321, −8.146765789128445, −7.999474304948237, −7.262434365028973, −6.229867935769922, −5.963301122913841, −5.477535921813826, −4.803667226684541, −4.079279124581626, −3.640255401422552, −3.085804406140456, −2.532191306638304, −1.634736482996229, −0.7836564795851593, 0, 0.7836564795851593, 1.634736482996229, 2.532191306638304, 3.085804406140456, 3.640255401422552, 4.079279124581626, 4.803667226684541, 5.477535921813826, 5.963301122913841, 6.229867935769922, 7.262434365028973, 7.999474304948237, 8.146765789128445, 8.514066172295321, 9.157713461173347, 9.787273805771055, 10.11100324293829, 10.46415776776442, 11.32134810674225, 11.83260105127406, 12.25062832353473, 13.08114592558208, 13.18627348306374, 13.71166188251753, 14.23651260162356

Graph of the $Z$-function along the critical line