Properties

Label 2-81312-1.1-c1-0-43
Degree $2$
Conductor $81312$
Sign $-1$
Analytic cond. $649.279$
Root an. cond. $25.4809$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 4·5-s + 7-s + 9-s − 6·13-s + 4·15-s − 2·19-s + 21-s − 4·23-s + 11·25-s + 27-s + 2·29-s + 2·31-s + 4·35-s + 2·37-s − 6·39-s − 4·43-s + 4·45-s − 6·47-s + 49-s + 2·53-s − 2·57-s − 14·61-s + 63-s − 24·65-s + 12·67-s − 4·69-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.78·5-s + 0.377·7-s + 1/3·9-s − 1.66·13-s + 1.03·15-s − 0.458·19-s + 0.218·21-s − 0.834·23-s + 11/5·25-s + 0.192·27-s + 0.371·29-s + 0.359·31-s + 0.676·35-s + 0.328·37-s − 0.960·39-s − 0.609·43-s + 0.596·45-s − 0.875·47-s + 1/7·49-s + 0.274·53-s − 0.264·57-s − 1.79·61-s + 0.125·63-s − 2.97·65-s + 1.46·67-s − 0.481·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81312 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81312\)    =    \(2^{5} \cdot 3 \cdot 7 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(649.279\)
Root analytic conductor: \(25.4809\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 81312,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 - T \)
11 \( 1 \)
good5 \( 1 - 4 T + p T^{2} \) 1.5.ae
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 2 T + p T^{2} \) 1.83.ac
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.13845169643418, −13.82236163888602, −13.40022553121411, −12.70700940090034, −12.46994165910557, −11.85398227340977, −11.16254965060612, −10.50892228516117, −10.02683970167088, −9.803168602240246, −9.319324328778975, −8.754233175035384, −8.203431503853654, −7.642071793293950, −7.048699841964160, −6.446744795852636, −6.059898542805904, −5.306393892850702, −4.897572494664576, −4.422350955655852, −3.523056453942154, −2.659864090602578, −2.408335383693173, −1.812116812522052, −1.203993124006594, 0, 1.203993124006594, 1.812116812522052, 2.408335383693173, 2.659864090602578, 3.523056453942154, 4.422350955655852, 4.897572494664576, 5.306393892850702, 6.059898542805904, 6.446744795852636, 7.048699841964160, 7.642071793293950, 8.203431503853654, 8.754233175035384, 9.319324328778975, 9.803168602240246, 10.02683970167088, 10.50892228516117, 11.16254965060612, 11.85398227340977, 12.46994165910557, 12.70700940090034, 13.40022553121411, 13.82236163888602, 14.13845169643418

Graph of the $Z$-function along the critical line