Properties

Label 2-81312-1.1-c1-0-35
Degree $2$
Conductor $81312$
Sign $-1$
Analytic cond. $649.279$
Root an. cond. $25.4809$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 7-s + 9-s + 2·13-s − 4·17-s + 6·19-s − 21-s − 4·23-s − 5·25-s + 27-s + 2·29-s + 10·31-s − 6·37-s + 2·39-s + 12·41-s + 12·43-s − 6·47-s + 49-s − 4·51-s − 6·53-s + 6·57-s − 6·61-s − 63-s − 4·67-s − 4·69-s − 8·71-s − 8·73-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.377·7-s + 1/3·9-s + 0.554·13-s − 0.970·17-s + 1.37·19-s − 0.218·21-s − 0.834·23-s − 25-s + 0.192·27-s + 0.371·29-s + 1.79·31-s − 0.986·37-s + 0.320·39-s + 1.87·41-s + 1.82·43-s − 0.875·47-s + 1/7·49-s − 0.560·51-s − 0.824·53-s + 0.794·57-s − 0.768·61-s − 0.125·63-s − 0.488·67-s − 0.481·69-s − 0.949·71-s − 0.936·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81312 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81312 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81312\)    =    \(2^{5} \cdot 3 \cdot 7 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(649.279\)
Root analytic conductor: \(25.4809\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 81312,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 + T \)
11 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 12 T + p T^{2} \) 1.41.am
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 8 T + p T^{2} \) 1.73.i
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 - 2 T + p T^{2} \) 1.83.ac
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.05806390726683, −13.77353613022113, −13.42239588045596, −12.73721768393630, −12.34433695636219, −11.64436971608670, −11.41002764329668, −10.62809896478593, −10.14567652666659, −9.722328587379132, −9.077126071770785, −8.857133272326631, −8.026300998880212, −7.728329316940356, −7.182219648222556, −6.437800691482388, −6.054457347701341, −5.527897759146718, −4.578063664788365, −4.274997635628298, −3.614877689687180, −2.905720076745494, −2.536970100223466, −1.650548504408033, −1.007827490145686, 0, 1.007827490145686, 1.650548504408033, 2.536970100223466, 2.905720076745494, 3.614877689687180, 4.274997635628298, 4.578063664788365, 5.527897759146718, 6.054457347701341, 6.437800691482388, 7.182219648222556, 7.728329316940356, 8.026300998880212, 8.857133272326631, 9.077126071770785, 9.722328587379132, 10.14567652666659, 10.62809896478593, 11.41002764329668, 11.64436971608670, 12.34433695636219, 12.73721768393630, 13.42239588045596, 13.77353613022113, 14.05806390726683

Graph of the $Z$-function along the critical line