Properties

Label 2-80325-1.1-c1-0-90
Degree $2$
Conductor $80325$
Sign $1$
Analytic cond. $641.398$
Root an. cond. $25.3258$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 2·4-s − 7-s − 5·11-s + 13-s + 2·14-s − 4·16-s − 17-s − 4·19-s + 10·22-s − 5·23-s − 2·26-s − 2·28-s − 29-s + 10·31-s + 8·32-s + 2·34-s − 8·37-s + 8·38-s + 3·41-s + 5·43-s − 10·44-s + 10·46-s − 4·47-s + 49-s + 2·52-s − 6·53-s + ⋯
L(s)  = 1  − 1.41·2-s + 4-s − 0.377·7-s − 1.50·11-s + 0.277·13-s + 0.534·14-s − 16-s − 0.242·17-s − 0.917·19-s + 2.13·22-s − 1.04·23-s − 0.392·26-s − 0.377·28-s − 0.185·29-s + 1.79·31-s + 1.41·32-s + 0.342·34-s − 1.31·37-s + 1.29·38-s + 0.468·41-s + 0.762·43-s − 1.50·44-s + 1.47·46-s − 0.583·47-s + 1/7·49-s + 0.277·52-s − 0.824·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 80325 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 80325 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(80325\)    =    \(3^{3} \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(641.398\)
Root analytic conductor: \(25.3258\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 80325,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 \)
7 \( 1 + T \)
17 \( 1 + T \)
good2 \( 1 + p T + p T^{2} \) 1.2.c
11 \( 1 + 5 T + p T^{2} \) 1.11.f
13 \( 1 - T + p T^{2} \) 1.13.ab
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 5 T + p T^{2} \) 1.23.f
29 \( 1 + T + p T^{2} \) 1.29.b
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 - 5 T + p T^{2} \) 1.43.af
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 + 3 T + p T^{2} \) 1.67.d
71 \( 1 - T + p T^{2} \) 1.71.ab
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 4 T + p T^{2} \) 1.89.e
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.47691670125352, −13.90593937338099, −13.43724928813532, −13.06415636747484, −12.40035600171118, −11.96640362598649, −11.24611093429440, −10.73648012006203, −10.37707385690411, −10.07284831636135, −9.447568690524482, −8.938207989753370, −8.370812002611518, −8.032977681861304, −7.596404014097530, −6.983343326258953, −6.330480542038779, −5.970594782522381, −5.114669141409326, −4.548889121562421, −3.985387628112124, −3.004278410691754, −2.539115702790619, −1.881684472010631, −1.158761437173728, 0, 0, 1.158761437173728, 1.881684472010631, 2.539115702790619, 3.004278410691754, 3.985387628112124, 4.548889121562421, 5.114669141409326, 5.970594782522381, 6.330480542038779, 6.983343326258953, 7.596404014097530, 8.032977681861304, 8.370812002611518, 8.938207989753370, 9.447568690524482, 10.07284831636135, 10.37707385690411, 10.73648012006203, 11.24611093429440, 11.96640362598649, 12.40035600171118, 13.06415636747484, 13.43724928813532, 13.90593937338099, 14.47691670125352

Graph of the $Z$-function along the critical line