Properties

Label 2-78650-1.1-c1-0-20
Degree $2$
Conductor $78650$
Sign $1$
Analytic cond. $628.023$
Root an. cond. $25.0603$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 2·3-s + 4-s + 2·6-s − 4·7-s − 8-s + 9-s − 2·12-s + 13-s + 4·14-s + 16-s + 6·17-s − 18-s + 8·19-s + 8·21-s + 7·23-s + 2·24-s − 26-s + 4·27-s − 4·28-s − 6·29-s − 7·31-s − 32-s − 6·34-s + 36-s − 4·37-s − 8·38-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.15·3-s + 1/2·4-s + 0.816·6-s − 1.51·7-s − 0.353·8-s + 1/3·9-s − 0.577·12-s + 0.277·13-s + 1.06·14-s + 1/4·16-s + 1.45·17-s − 0.235·18-s + 1.83·19-s + 1.74·21-s + 1.45·23-s + 0.408·24-s − 0.196·26-s + 0.769·27-s − 0.755·28-s − 1.11·29-s − 1.25·31-s − 0.176·32-s − 1.02·34-s + 1/6·36-s − 0.657·37-s − 1.29·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 78650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 78650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(78650\)    =    \(2 \cdot 5^{2} \cdot 11^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(628.023\)
Root analytic conductor: \(25.0603\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 78650,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9035259937\)
\(L(\frac12)\) \(\approx\) \(0.9035259937\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 \)
11 \( 1 \)
13 \( 1 - T \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
7 \( 1 + 4 T + p T^{2} \) 1.7.e
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 - 7 T + p T^{2} \) 1.23.ah
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 7 T + p T^{2} \) 1.31.h
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 5 T + p T^{2} \) 1.53.f
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 5 T + p T^{2} \) 1.67.f
71 \( 1 - 15 T + p T^{2} \) 1.71.ap
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 7 T + p T^{2} \) 1.83.h
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.16626457222905, −13.26409755472136, −12.79562520814272, −12.56573018942586, −11.88012971692614, −11.46873787143324, −11.03470786834500, −10.53165601392577, −9.828533560021829, −9.698918154586223, −9.086943126278198, −8.629928023023377, −7.630107142572390, −7.315960927323655, −6.937989899478188, −6.154421446725597, −5.791601465428662, −5.405262968803983, −4.815486728540428, −3.662424752942807, −3.281816220476683, −2.885306765551903, −1.731901735655829, −0.9225254170988050, −0.4950309338499874, 0.4950309338499874, 0.9225254170988050, 1.731901735655829, 2.885306765551903, 3.281816220476683, 3.662424752942807, 4.815486728540428, 5.405262968803983, 5.791601465428662, 6.154421446725597, 6.937989899478188, 7.315960927323655, 7.630107142572390, 8.629928023023377, 9.086943126278198, 9.698918154586223, 9.828533560021829, 10.53165601392577, 11.03470786834500, 11.46873787143324, 11.88012971692614, 12.56573018942586, 12.79562520814272, 13.26409755472136, 14.16626457222905

Graph of the $Z$-function along the critical line