Properties

Label 2-280e2-1.1-c1-0-147
Degree $2$
Conductor $78400$
Sign $-1$
Analytic cond. $626.027$
Root an. cond. $25.0205$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·3-s + 6·9-s − 3·11-s − 13-s − 17-s − 4·19-s + 4·23-s − 9·27-s + 9·29-s + 6·31-s + 9·33-s − 8·37-s + 3·39-s − 6·41-s + 8·43-s + 7·47-s + 3·51-s − 8·53-s + 12·57-s − 4·59-s + 10·61-s + 8·67-s − 12·69-s + 12·71-s − 14·73-s + 5·79-s + 9·81-s + ⋯
L(s)  = 1  − 1.73·3-s + 2·9-s − 0.904·11-s − 0.277·13-s − 0.242·17-s − 0.917·19-s + 0.834·23-s − 1.73·27-s + 1.67·29-s + 1.07·31-s + 1.56·33-s − 1.31·37-s + 0.480·39-s − 0.937·41-s + 1.21·43-s + 1.02·47-s + 0.420·51-s − 1.09·53-s + 1.58·57-s − 0.520·59-s + 1.28·61-s + 0.977·67-s − 1.44·69-s + 1.42·71-s − 1.63·73-s + 0.562·79-s + 81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 78400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 78400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(78400\)    =    \(2^{6} \cdot 5^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(626.027\)
Root analytic conductor: \(25.0205\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 78400,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 \)
good3 \( 1 + p T + p T^{2} \) 1.3.d
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 + T + p T^{2} \) 1.13.b
17 \( 1 + T + p T^{2} \) 1.17.b
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 7 T + p T^{2} \) 1.47.ah
53 \( 1 + 8 T + p T^{2} \) 1.53.i
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 - 5 T + p T^{2} \) 1.79.af
83 \( 1 + 16 T + p T^{2} \) 1.83.q
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 + 17 T + p T^{2} \) 1.97.r
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.23286097760578, −13.57836307721289, −13.18458574595911, −12.54606264474622, −12.23248600493293, −11.91852734462797, −11.07519932345215, −10.89165121734655, −10.39879024025421, −10.01333262173060, −9.412929665485584, −8.548869492062518, −8.242089851543334, −7.444217329367860, −6.767787362388275, −6.669493575970122, −5.928224305816601, −5.405913378773341, −4.902801114024961, −4.549073638960280, −3.889169187256340, −2.909153661737918, −2.357993247562968, −1.409735320853055, −0.7101890494883200, 0, 0.7101890494883200, 1.409735320853055, 2.357993247562968, 2.909153661737918, 3.889169187256340, 4.549073638960280, 4.902801114024961, 5.405913378773341, 5.928224305816601, 6.669493575970122, 6.767787362388275, 7.444217329367860, 8.242089851543334, 8.548869492062518, 9.412929665485584, 10.01333262173060, 10.39879024025421, 10.89165121734655, 11.07519932345215, 11.91852734462797, 12.23248600493293, 12.54606264474622, 13.18458574595911, 13.57836307721289, 14.23286097760578

Graph of the $Z$-function along the critical line