Properties

Label 2-76050-1.1-c1-0-58
Degree $2$
Conductor $76050$
Sign $-1$
Analytic cond. $607.262$
Root an. cond. $24.6426$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 4·7-s − 8-s − 5·11-s + 4·14-s + 16-s − 2·17-s + 8·19-s + 5·22-s + 3·23-s − 4·28-s − 7·29-s − 7·31-s − 32-s + 2·34-s + 3·37-s − 8·38-s + 43-s − 5·44-s − 3·46-s − 7·47-s + 9·49-s + 10·53-s + 4·56-s + 7·58-s + 5·59-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 1.51·7-s − 0.353·8-s − 1.50·11-s + 1.06·14-s + 1/4·16-s − 0.485·17-s + 1.83·19-s + 1.06·22-s + 0.625·23-s − 0.755·28-s − 1.29·29-s − 1.25·31-s − 0.176·32-s + 0.342·34-s + 0.493·37-s − 1.29·38-s + 0.152·43-s − 0.753·44-s − 0.442·46-s − 1.02·47-s + 9/7·49-s + 1.37·53-s + 0.534·56-s + 0.919·58-s + 0.650·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 76050 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 76050 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(76050\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(607.262\)
Root analytic conductor: \(24.6426\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 76050,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
13 \( 1 \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + 5 T + p T^{2} \) 1.11.f
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 + 7 T + p T^{2} \) 1.29.h
31 \( 1 + 7 T + p T^{2} \) 1.31.h
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 + 7 T + p T^{2} \) 1.47.h
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 5 T + p T^{2} \) 1.59.af
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 - T + p T^{2} \) 1.79.ab
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 - 12 T + p T^{2} \) 1.97.am
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.45672418688319, −13.42829547424389, −13.25592749169756, −12.99873674549831, −12.31264304409632, −11.73049493048598, −11.20080711509513, −10.71244108299135, −10.15189739565555, −9.759261660672540, −9.286104709253929, −8.926630249043574, −8.151991832449586, −7.603257444154652, −7.129593930402993, −6.852005831101635, −5.920034253675211, −5.562260583391394, −5.118614562659767, −4.116259500815951, −3.405538799359390, −2.974399745972141, −2.468062111172576, −1.618103985701596, −0.6416535740881581, 0, 0.6416535740881581, 1.618103985701596, 2.468062111172576, 2.974399745972141, 3.405538799359390, 4.116259500815951, 5.118614562659767, 5.562260583391394, 5.920034253675211, 6.852005831101635, 7.129593930402993, 7.603257444154652, 8.151991832449586, 8.926630249043574, 9.286104709253929, 9.759261660672540, 10.15189739565555, 10.71244108299135, 11.20080711509513, 11.73049493048598, 12.31264304409632, 12.99873674549831, 13.25592749169756, 13.42829547424389, 14.45672418688319

Graph of the $Z$-function along the critical line