Properties

Label 2-7350-1.1-c1-0-77
Degree $2$
Conductor $7350$
Sign $-1$
Analytic cond. $58.6900$
Root an. cond. $7.66094$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 6-s − 8-s + 9-s − 12-s − 5·13-s + 16-s + 6·17-s − 18-s + 7·19-s − 6·23-s + 24-s + 5·26-s − 27-s − 8·31-s − 32-s − 6·34-s + 36-s − 37-s − 7·38-s + 5·39-s + 8·43-s + 6·46-s − 6·47-s − 48-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s − 0.353·8-s + 1/3·9-s − 0.288·12-s − 1.38·13-s + 1/4·16-s + 1.45·17-s − 0.235·18-s + 1.60·19-s − 1.25·23-s + 0.204·24-s + 0.980·26-s − 0.192·27-s − 1.43·31-s − 0.176·32-s − 1.02·34-s + 1/6·36-s − 0.164·37-s − 1.13·38-s + 0.800·39-s + 1.21·43-s + 0.884·46-s − 0.875·47-s − 0.144·48-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7350\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(58.6900\)
Root analytic conductor: \(7.66094\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 7350,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 \)
good11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 5 T + p T^{2} \) 1.13.f
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 7 T + p T^{2} \) 1.19.ah
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + T + p T^{2} \) 1.37.b
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 - T + p T^{2} \) 1.61.ab
67 \( 1 + 13 T + p T^{2} \) 1.67.n
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 5 T + p T^{2} \) 1.73.f
79 \( 1 + 7 T + p T^{2} \) 1.79.h
83 \( 1 - 18 T + p T^{2} \) 1.83.as
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 7 T + p T^{2} \) 1.97.ah
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.65109861048481194585512537700, −7.09425148965284136036381602484, −6.15997819673331064505933601889, −5.46746767928956906435806540590, −5.00039473757932147449809338334, −3.85001089347771845206232372011, −3.06155084127255832852186929223, −2.05666066872417321305878249951, −1.10488875166942823009191099151, 0, 1.10488875166942823009191099151, 2.05666066872417321305878249951, 3.06155084127255832852186929223, 3.85001089347771845206232372011, 5.00039473757932147449809338334, 5.46746767928956906435806540590, 6.15997819673331064505933601889, 7.09425148965284136036381602484, 7.65109861048481194585512537700

Graph of the $Z$-function along the critical line