Properties

Label 2-71478-1.1-c1-0-44
Degree $2$
Conductor $71478$
Sign $-1$
Analytic cond. $570.754$
Root an. cond. $23.8904$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 2·5-s − 4·7-s + 8-s − 2·10-s + 11-s + 6·13-s − 4·14-s + 16-s − 2·17-s − 2·20-s + 22-s − 4·23-s − 25-s + 6·26-s − 4·28-s + 6·29-s + 32-s − 2·34-s + 8·35-s − 6·37-s − 2·40-s − 6·41-s + 4·43-s + 44-s − 4·46-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.894·5-s − 1.51·7-s + 0.353·8-s − 0.632·10-s + 0.301·11-s + 1.66·13-s − 1.06·14-s + 1/4·16-s − 0.485·17-s − 0.447·20-s + 0.213·22-s − 0.834·23-s − 1/5·25-s + 1.17·26-s − 0.755·28-s + 1.11·29-s + 0.176·32-s − 0.342·34-s + 1.35·35-s − 0.986·37-s − 0.316·40-s − 0.937·41-s + 0.609·43-s + 0.150·44-s − 0.589·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 71478 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 71478 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(71478\)    =    \(2 \cdot 3^{2} \cdot 11 \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(570.754\)
Root analytic conductor: \(23.8904\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 71478,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
11 \( 1 - T \)
19 \( 1 \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + 4 T + p T^{2} \) 1.7.e
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 + 2 T + p T^{2} \) 1.17.c
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.14507442429536, −13.78683699094356, −13.39478180401841, −12.95184744343088, −12.30431276628231, −11.95068114895634, −11.59978954043781, −10.84923537205383, −10.41653372384358, −10.03279306231551, −9.145675398245164, −8.770029536861612, −8.298788856364332, −7.501055813261351, −7.089277266825897, −6.381840619827810, −6.160394438963956, −5.632752695144147, −4.727922018778844, −3.982508919981499, −3.846174013983410, −3.232894983803653, −2.669621861977100, −1.751135672591534, −0.8625921624658588, 0, 0.8625921624658588, 1.751135672591534, 2.669621861977100, 3.232894983803653, 3.846174013983410, 3.982508919981499, 4.727922018778844, 5.632752695144147, 6.160394438963956, 6.381840619827810, 7.089277266825897, 7.501055813261351, 8.298788856364332, 8.770029536861612, 9.145675398245164, 10.03279306231551, 10.41653372384358, 10.84923537205383, 11.59978954043781, 11.95068114895634, 12.30431276628231, 12.95184744343088, 13.39478180401841, 13.78683699094356, 14.14507442429536

Graph of the $Z$-function along the critical line