Properties

Label 2-68770-1.1-c1-0-16
Degree $2$
Conductor $68770$
Sign $-1$
Analytic cond. $549.131$
Root an. cond. $23.4335$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 2·3-s + 4-s − 5-s + 2·6-s + 4·7-s − 8-s + 9-s + 10-s + 6·11-s − 2·12-s + 13-s − 4·14-s + 2·15-s + 16-s + 6·17-s − 18-s − 2·19-s − 20-s − 8·21-s − 6·22-s + 2·24-s + 25-s − 26-s + 4·27-s + 4·28-s − 6·29-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.15·3-s + 1/2·4-s − 0.447·5-s + 0.816·6-s + 1.51·7-s − 0.353·8-s + 1/3·9-s + 0.316·10-s + 1.80·11-s − 0.577·12-s + 0.277·13-s − 1.06·14-s + 0.516·15-s + 1/4·16-s + 1.45·17-s − 0.235·18-s − 0.458·19-s − 0.223·20-s − 1.74·21-s − 1.27·22-s + 0.408·24-s + 1/5·25-s − 0.196·26-s + 0.769·27-s + 0.755·28-s − 1.11·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 68770 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 68770 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(68770\)    =    \(2 \cdot 5 \cdot 13 \cdot 23^{2}\)
Sign: $-1$
Analytic conductor: \(549.131\)
Root analytic conductor: \(23.4335\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 68770,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 + T \)
13 \( 1 - T \)
23 \( 1 \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 2 T + p T^{2} \) 1.19.c
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.53797733049997, −14.20087547812443, −13.38282134489259, −12.55449353664022, −12.13688049972619, −11.65418402290907, −11.39201646236745, −11.17961702729087, −10.37171546630979, −10.03870370450586, −9.262665676798819, −8.742695632255007, −8.261776772773876, −7.797988274805143, −7.184200784154998, −6.600837216930184, −6.153683097153443, −5.523691675323631, −4.987244585483402, −4.443291821602583, −3.709068093064503, −3.190735633601786, −1.940161210567461, −1.421863618139079, −0.9861501043336065, 0, 0.9861501043336065, 1.421863618139079, 1.940161210567461, 3.190735633601786, 3.709068093064503, 4.443291821602583, 4.987244585483402, 5.523691675323631, 6.153683097153443, 6.600837216930184, 7.184200784154998, 7.797988274805143, 8.261776772773876, 8.742695632255007, 9.262665676798819, 10.03870370450586, 10.37171546630979, 11.17961702729087, 11.39201646236745, 11.65418402290907, 12.13688049972619, 12.55449353664022, 13.38282134489259, 14.20087547812443, 14.53797733049997

Graph of the $Z$-function along the critical line