Properties

Label 2-67518-1.1-c1-0-11
Degree $2$
Conductor $67518$
Sign $1$
Analytic cond. $539.133$
Root an. cond. $23.2192$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 2·5-s + 8-s + 2·10-s − 2·13-s + 16-s − 6·17-s − 4·19-s + 2·20-s − 8·23-s − 25-s − 2·26-s + 2·29-s − 31-s + 32-s − 6·34-s + 10·37-s − 4·38-s + 2·40-s − 6·41-s − 8·43-s − 8·46-s + 8·47-s − 7·49-s − 50-s − 2·52-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.894·5-s + 0.353·8-s + 0.632·10-s − 0.554·13-s + 1/4·16-s − 1.45·17-s − 0.917·19-s + 0.447·20-s − 1.66·23-s − 1/5·25-s − 0.392·26-s + 0.371·29-s − 0.179·31-s + 0.176·32-s − 1.02·34-s + 1.64·37-s − 0.648·38-s + 0.316·40-s − 0.937·41-s − 1.21·43-s − 1.17·46-s + 1.16·47-s − 49-s − 0.141·50-s − 0.277·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 67518 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 67518 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(67518\)    =    \(2 \cdot 3^{2} \cdot 11^{2} \cdot 31\)
Sign: $1$
Analytic conductor: \(539.133\)
Root analytic conductor: \(23.2192\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 67518,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.088111603\)
\(L(\frac12)\) \(\approx\) \(3.088111603\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
11 \( 1 \)
31 \( 1 + T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.18296903233057, −13.48349053374247, −13.29655252366993, −12.91689400644592, −12.17773162745189, −11.67714470422617, −11.38127058263251, −10.49715254205282, −10.21216470596385, −9.795735029500446, −9.044164543791231, −8.590935245798473, −7.975248492582366, −7.327999363030190, −6.730537469121942, −6.122202465482822, −5.995127233933316, −5.156125631289420, −4.576154798164534, −4.164015334703001, −3.470133515730959, −2.543493367727356, −2.153833472786316, −1.725003938367976, −0.4754919863275742, 0.4754919863275742, 1.725003938367976, 2.153833472786316, 2.543493367727356, 3.470133515730959, 4.164015334703001, 4.576154798164534, 5.156125631289420, 5.995127233933316, 6.122202465482822, 6.730537469121942, 7.327999363030190, 7.975248492582366, 8.590935245798473, 9.044164543791231, 9.795735029500446, 10.21216470596385, 10.49715254205282, 11.38127058263251, 11.67714470422617, 12.17773162745189, 12.91689400644592, 13.29655252366993, 13.48349053374247, 14.18296903233057

Graph of the $Z$-function along the critical line