Properties

Label 2-66300-1.1-c1-0-42
Degree $2$
Conductor $66300$
Sign $1$
Analytic cond. $529.408$
Root an. cond. $23.0088$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 3·7-s + 9-s − 5·11-s − 13-s + 17-s − 5·19-s − 3·21-s − 2·23-s + 27-s − 9·29-s − 2·31-s − 5·33-s + 7·37-s − 39-s − 3·41-s + 2·43-s − 3·47-s + 2·49-s + 51-s − 11·53-s − 5·57-s + 10·59-s − 8·61-s − 3·63-s − 6·67-s − 2·69-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.13·7-s + 1/3·9-s − 1.50·11-s − 0.277·13-s + 0.242·17-s − 1.14·19-s − 0.654·21-s − 0.417·23-s + 0.192·27-s − 1.67·29-s − 0.359·31-s − 0.870·33-s + 1.15·37-s − 0.160·39-s − 0.468·41-s + 0.304·43-s − 0.437·47-s + 2/7·49-s + 0.140·51-s − 1.51·53-s − 0.662·57-s + 1.30·59-s − 1.02·61-s − 0.377·63-s − 0.733·67-s − 0.240·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 66300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 66300 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(66300\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 13 \cdot 17\)
Sign: $1$
Analytic conductor: \(529.408\)
Root analytic conductor: \(23.0088\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 66300,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
13 \( 1 + T \)
17 \( 1 - T \)
good7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 + 5 T + p T^{2} \) 1.11.f
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 + 9 T + p T^{2} \) 1.29.j
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 7 T + p T^{2} \) 1.37.ah
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + 11 T + p T^{2} \) 1.53.l
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 + 6 T + p T^{2} \) 1.67.g
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 4 T + p T^{2} \) 1.89.ae
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.75597759941283, −14.30595912220177, −13.43009539198130, −13.13993364003008, −12.92892073476343, −12.41645419989835, −11.73077309319137, −11.04489645307970, −10.53393879494452, −10.15864748218325, −9.480766067911308, −9.312265584030523, −8.474069011266284, −8.015557882457059, −7.544481481204108, −7.012065800875322, −6.363017685028261, −5.782089257705751, −5.333534664066693, −4.454847294400461, −4.031192659126795, −3.193480666601725, −2.840375085675020, −2.204375656109237, −1.485055169330133, 0, 0, 1.485055169330133, 2.204375656109237, 2.840375085675020, 3.193480666601725, 4.031192659126795, 4.454847294400461, 5.333534664066693, 5.782089257705751, 6.363017685028261, 7.012065800875322, 7.544481481204108, 8.015557882457059, 8.474069011266284, 9.312265584030523, 9.480766067911308, 10.15864748218325, 10.53393879494452, 11.04489645307970, 11.73077309319137, 12.41645419989835, 12.92892073476343, 13.13993364003008, 13.43009539198130, 14.30595912220177, 14.75597759941283

Graph of the $Z$-function along the critical line