Properties

Label 2-64320-1.1-c1-0-59
Degree $2$
Conductor $64320$
Sign $-1$
Analytic cond. $513.597$
Root an. cond. $22.6626$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 5-s + 2·7-s + 9-s − 6·13-s + 15-s + 2·21-s + 2·23-s + 25-s + 27-s − 4·29-s − 8·31-s + 2·35-s + 6·37-s − 6·39-s − 6·41-s + 8·43-s + 45-s + 6·47-s − 3·49-s + 2·53-s + 2·59-s − 4·61-s + 2·63-s − 6·65-s + 67-s + 2·69-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.447·5-s + 0.755·7-s + 1/3·9-s − 1.66·13-s + 0.258·15-s + 0.436·21-s + 0.417·23-s + 1/5·25-s + 0.192·27-s − 0.742·29-s − 1.43·31-s + 0.338·35-s + 0.986·37-s − 0.960·39-s − 0.937·41-s + 1.21·43-s + 0.149·45-s + 0.875·47-s − 3/7·49-s + 0.274·53-s + 0.260·59-s − 0.512·61-s + 0.251·63-s − 0.744·65-s + 0.122·67-s + 0.240·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 64320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 64320 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(64320\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 67\)
Sign: $-1$
Analytic conductor: \(513.597\)
Root analytic conductor: \(22.6626\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 64320,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 - T \)
67 \( 1 - T \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 2 T + p T^{2} \) 1.59.ac
61 \( 1 + 4 T + p T^{2} \) 1.61.e
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.62439209881234, −13.98003271754432, −13.63921907158009, −12.92787905331202, −12.53145684783631, −12.11771057997393, −11.35561282562741, −10.96663528547629, −10.40312787998771, −9.766104684403869, −9.349226778473218, −9.014192105027111, −8.232777830760527, −7.749496823638301, −7.307893335199278, −6.854704301024472, −6.056745954782361, −5.279594017171127, −5.096652508856375, −4.310110655449071, −3.777870147911197, −2.912600218802302, −2.350407878998020, −1.890990500614373, −1.078791751836463, 0, 1.078791751836463, 1.890990500614373, 2.350407878998020, 2.912600218802302, 3.777870147911197, 4.310110655449071, 5.096652508856375, 5.279594017171127, 6.056745954782361, 6.854704301024472, 7.307893335199278, 7.749496823638301, 8.232777830760527, 9.014192105027111, 9.349226778473218, 9.766104684403869, 10.40312787998771, 10.96663528547629, 11.35561282562741, 12.11771057997393, 12.53145684783631, 12.92787905331202, 13.63921907158009, 13.98003271754432, 14.62439209881234

Graph of the $Z$-function along the critical line