Properties

Label 2-6336-1.1-c1-0-37
Degree $2$
Conductor $6336$
Sign $1$
Analytic cond. $50.5932$
Root an. cond. $7.11289$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 4·7-s − 11-s + 2·13-s − 2·17-s − 4·19-s − 25-s − 6·29-s + 4·31-s + 8·35-s + 2·37-s + 6·41-s + 4·43-s + 8·47-s + 9·49-s − 6·53-s − 2·55-s + 12·59-s + 10·61-s + 4·65-s − 4·67-s + 10·73-s − 4·77-s + 12·79-s + 12·83-s − 4·85-s − 10·89-s + ⋯
L(s)  = 1  + 0.894·5-s + 1.51·7-s − 0.301·11-s + 0.554·13-s − 0.485·17-s − 0.917·19-s − 1/5·25-s − 1.11·29-s + 0.718·31-s + 1.35·35-s + 0.328·37-s + 0.937·41-s + 0.609·43-s + 1.16·47-s + 9/7·49-s − 0.824·53-s − 0.269·55-s + 1.56·59-s + 1.28·61-s + 0.496·65-s − 0.488·67-s + 1.17·73-s − 0.455·77-s + 1.35·79-s + 1.31·83-s − 0.433·85-s − 1.05·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6336 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6336\)    =    \(2^{6} \cdot 3^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(50.5932\)
Root analytic conductor: \(7.11289\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6336,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.964976277\)
\(L(\frac12)\) \(\approx\) \(2.964976277\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 + T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 18 T + p T^{2} \) 1.97.as
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.053895597391142305879666941000, −7.46394001056611669577011074743, −6.50361961579357696893264119982, −5.85179377291294284579229797341, −5.23348766404177363956197396972, −4.47675688904669232859519816445, −3.78120621079530929924808485609, −2.35453029973131530751341134799, −2.01415947096316150087329841902, −0.927267684575568496438184826433, 0.927267684575568496438184826433, 2.01415947096316150087329841902, 2.35453029973131530751341134799, 3.78120621079530929924808485609, 4.47675688904669232859519816445, 5.23348766404177363956197396972, 5.85179377291294284579229797341, 6.50361961579357696893264119982, 7.46394001056611669577011074743, 8.053895597391142305879666941000

Graph of the $Z$-function along the critical line