Properties

Label 6336.ci
Number of curves $4$
Conductor $6336$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ci1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 6336.ci have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 6336.ci do not have complex multiplication.

Modular form 6336.2.a.ci

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{5} + 4 q^{7} - q^{11} + 2 q^{13} - 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 6336.ci

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
6336.ci1 6336n3 \([0, 0, 0, -11290764, -14602698160]\) \(6663712298552914184/29403\) \(702375100416\) \([2]\) \(122880\) \(2.3597\)  
6336.ci2 6336n2 \([0, 0, 0, -705684, -228159520]\) \(13015685560572352/864536409\) \(2581491884691456\) \([2, 2]\) \(61440\) \(2.0131\)  
6336.ci3 6336n4 \([0, 0, 0, -662124, -257553808]\) \(-1343891598641864/421900912521\) \(-10078314994984845312\) \([2]\) \(122880\) \(2.3597\)  
6336.ci4 6336n1 \([0, 0, 0, -46839, -3098068]\) \(243578556889408/52089208083\) \(2430274092320448\) \([2]\) \(30720\) \(1.6665\) \(\Gamma_0(N)\)-optimal