Properties

Label 2-6320-1.1-c1-0-92
Degree $2$
Conductor $6320$
Sign $1$
Analytic cond. $50.4654$
Root an. cond. $7.10390$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 5-s + 2·7-s + 9-s + 4·11-s + 2·13-s + 2·15-s − 4·17-s + 4·19-s + 4·21-s + 25-s − 4·27-s − 6·29-s + 8·31-s + 8·33-s + 2·35-s + 8·37-s + 4·39-s − 2·41-s + 10·43-s + 45-s − 2·47-s − 3·49-s − 8·51-s − 12·53-s + 4·55-s + 8·57-s + ⋯
L(s)  = 1  + 1.15·3-s + 0.447·5-s + 0.755·7-s + 1/3·9-s + 1.20·11-s + 0.554·13-s + 0.516·15-s − 0.970·17-s + 0.917·19-s + 0.872·21-s + 1/5·25-s − 0.769·27-s − 1.11·29-s + 1.43·31-s + 1.39·33-s + 0.338·35-s + 1.31·37-s + 0.640·39-s − 0.312·41-s + 1.52·43-s + 0.149·45-s − 0.291·47-s − 3/7·49-s − 1.12·51-s − 1.64·53-s + 0.539·55-s + 1.05·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6320 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6320\)    =    \(2^{4} \cdot 5 \cdot 79\)
Sign: $1$
Analytic conductor: \(50.4654\)
Root analytic conductor: \(7.10390\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 6320,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.205895942\)
\(L(\frac12)\) \(\approx\) \(4.205895942\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 - T \)
79 \( 1 - T \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.040721370974225166210857412146, −7.60131094092934614062007472306, −6.57940715487016495444241943251, −6.07168116492758495052613678127, −5.07082329034147701370815702415, −4.25810016007178759574644517759, −3.59297703667070069965696659492, −2.70259536619826786269143930281, −1.92054604388890799191821650783, −1.09756009964482636156470610850, 1.09756009964482636156470610850, 1.92054604388890799191821650783, 2.70259536619826786269143930281, 3.59297703667070069965696659492, 4.25810016007178759574644517759, 5.07082329034147701370815702415, 6.07168116492758495052613678127, 6.57940715487016495444241943251, 7.60131094092934614062007472306, 8.040721370974225166210857412146

Graph of the $Z$-function along the critical line