Properties

Label 2-6320-1.1-c1-0-141
Degree $2$
Conductor $6320$
Sign $-1$
Analytic cond. $50.4654$
Root an. cond. $7.10390$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 5-s − 2·7-s + 9-s − 4·11-s + 2·13-s + 2·15-s + 4·17-s − 4·19-s − 4·21-s + 4·23-s + 25-s − 4·27-s − 2·29-s − 8·31-s − 8·33-s − 2·35-s − 4·37-s + 4·39-s − 2·41-s + 2·43-s + 45-s − 6·47-s − 3·49-s + 8·51-s − 4·55-s − 8·57-s + ⋯
L(s)  = 1  + 1.15·3-s + 0.447·5-s − 0.755·7-s + 1/3·9-s − 1.20·11-s + 0.554·13-s + 0.516·15-s + 0.970·17-s − 0.917·19-s − 0.872·21-s + 0.834·23-s + 1/5·25-s − 0.769·27-s − 0.371·29-s − 1.43·31-s − 1.39·33-s − 0.338·35-s − 0.657·37-s + 0.640·39-s − 0.312·41-s + 0.304·43-s + 0.149·45-s − 0.875·47-s − 3/7·49-s + 1.12·51-s − 0.539·55-s − 1.05·57-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6320 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6320\)    =    \(2^{4} \cdot 5 \cdot 79\)
Sign: $-1$
Analytic conductor: \(50.4654\)
Root analytic conductor: \(7.10390\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6320,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 - T \)
79 \( 1 - T \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 16 T + p T^{2} \) 1.71.q
73 \( 1 + 10 T + p T^{2} \) 1.73.k
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.67008255477933760991433208866, −7.22329918228592839586944975148, −6.20612396130760631485655250596, −5.62592885542084982816934982754, −4.82195068433520528627795320486, −3.63479557909904202428650762890, −3.20589700370284364908510613284, −2.45528871816985241258107229214, −1.59422500695158483214670044278, 0, 1.59422500695158483214670044278, 2.45528871816985241258107229214, 3.20589700370284364908510613284, 3.63479557909904202428650762890, 4.82195068433520528627795320486, 5.62592885542084982816934982754, 6.20612396130760631485655250596, 7.22329918228592839586944975148, 7.67008255477933760991433208866

Graph of the $Z$-function along the critical line