Properties

Label 2-62400-1.1-c1-0-88
Degree $2$
Conductor $62400$
Sign $1$
Analytic cond. $498.266$
Root an. cond. $22.3218$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 4·7-s + 9-s − 13-s + 2·17-s + 4·19-s − 4·21-s + 8·23-s − 27-s − 2·29-s + 8·31-s + 2·37-s + 39-s − 6·41-s − 12·43-s + 9·49-s − 2·51-s + 10·53-s − 4·57-s + 10·61-s + 4·63-s + 4·67-s − 8·69-s + 16·71-s + 6·73-s + 8·79-s + 81-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.51·7-s + 1/3·9-s − 0.277·13-s + 0.485·17-s + 0.917·19-s − 0.872·21-s + 1.66·23-s − 0.192·27-s − 0.371·29-s + 1.43·31-s + 0.328·37-s + 0.160·39-s − 0.937·41-s − 1.82·43-s + 9/7·49-s − 0.280·51-s + 1.37·53-s − 0.529·57-s + 1.28·61-s + 0.503·63-s + 0.488·67-s − 0.963·69-s + 1.89·71-s + 0.702·73-s + 0.900·79-s + 1/9·81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 62400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 62400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(62400\)    =    \(2^{6} \cdot 3 \cdot 5^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(498.266\)
Root analytic conductor: \(22.3218\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 62400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.168927005\)
\(L(\frac12)\) \(\approx\) \(3.168927005\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
13 \( 1 + T \)
good7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.19148383725745, −13.87076615706167, −13.24052397198859, −12.76638706630016, −11.99260117500858, −11.71465506399207, −11.35479845404575, −10.81572122232758, −10.25141107212596, −9.758996476308454, −9.186656164159299, −8.385188668445802, −8.146817945786576, −7.528595763645736, −6.869712778459607, −6.581479188673564, −5.534638868898203, −5.115386606558101, −4.987203844694063, −4.156521118035649, −3.466782841693392, −2.715075513991765, −1.946848890786606, −1.198870876233714, −0.7218811306776762, 0.7218811306776762, 1.198870876233714, 1.946848890786606, 2.715075513991765, 3.466782841693392, 4.156521118035649, 4.987203844694063, 5.115386606558101, 5.534638868898203, 6.581479188673564, 6.869712778459607, 7.528595763645736, 8.146817945786576, 8.385188668445802, 9.186656164159299, 9.758996476308454, 10.25141107212596, 10.81572122232758, 11.35479845404575, 11.71465506399207, 11.99260117500858, 12.76638706630016, 13.24052397198859, 13.87076615706167, 14.19148383725745

Graph of the $Z$-function along the critical line