Properties

Label 2-62400-1.1-c1-0-39
Degree $2$
Conductor $62400$
Sign $1$
Analytic cond. $498.266$
Root an. cond. $22.3218$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 4·7-s + 9-s − 4·11-s + 13-s − 2·17-s − 4·21-s − 27-s + 10·29-s + 4·31-s + 4·33-s − 2·37-s − 39-s + 6·41-s − 12·43-s + 9·49-s + 2·51-s + 6·53-s − 12·59-s + 2·61-s + 4·63-s − 8·67-s − 2·73-s − 16·77-s + 8·79-s + 81-s + 4·83-s + ⋯
L(s)  = 1  − 0.577·3-s + 1.51·7-s + 1/3·9-s − 1.20·11-s + 0.277·13-s − 0.485·17-s − 0.872·21-s − 0.192·27-s + 1.85·29-s + 0.718·31-s + 0.696·33-s − 0.328·37-s − 0.160·39-s + 0.937·41-s − 1.82·43-s + 9/7·49-s + 0.280·51-s + 0.824·53-s − 1.56·59-s + 0.256·61-s + 0.503·63-s − 0.977·67-s − 0.234·73-s − 1.82·77-s + 0.900·79-s + 1/9·81-s + 0.439·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 62400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 62400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(62400\)    =    \(2^{6} \cdot 3 \cdot 5^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(498.266\)
Root analytic conductor: \(22.3218\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 62400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.091373217\)
\(L(\frac12)\) \(\approx\) \(2.091373217\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
13 \( 1 - T \)
good7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + 4 T + p T^{2} \) 1.11.e
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.19453736185529, −13.69142455389404, −13.41615707501339, −12.64439250346775, −12.19778181578740, −11.65698534177179, −11.26189537855176, −10.73362988184234, −10.30170601315193, −9.950454079702909, −8.923062025652828, −8.589829221967866, −7.933289692162359, −7.719036011564201, −6.918878979437006, −6.376741285668369, −5.744650047324306, −5.139686602314625, −4.658134220660058, −4.432488633762000, −3.381863403161944, −2.665708045739181, −2.005528061755049, −1.304497496843213, −0.5347580677740317, 0.5347580677740317, 1.304497496843213, 2.005528061755049, 2.665708045739181, 3.381863403161944, 4.432488633762000, 4.658134220660058, 5.139686602314625, 5.744650047324306, 6.376741285668369, 6.918878979437006, 7.719036011564201, 7.933289692162359, 8.589829221967866, 8.923062025652828, 9.950454079702909, 10.30170601315193, 10.73362988184234, 11.26189537855176, 11.65698534177179, 12.19778181578740, 12.64439250346775, 13.41615707501339, 13.69142455389404, 14.19453736185529

Graph of the $Z$-function along the critical line