Properties

Label 2-624-1.1-c1-0-7
Degree $2$
Conductor $624$
Sign $1$
Analytic cond. $4.98266$
Root an. cond. $2.23218$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 4·5-s + 9-s + 2·11-s − 13-s + 4·15-s + 2·17-s − 8·19-s − 4·23-s + 11·25-s + 27-s − 6·29-s + 4·31-s + 2·33-s + 6·37-s − 39-s − 12·41-s − 4·43-s + 4·45-s + 6·47-s − 7·49-s + 2·51-s − 2·53-s + 8·55-s − 8·57-s + 14·59-s + 10·61-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.78·5-s + 1/3·9-s + 0.603·11-s − 0.277·13-s + 1.03·15-s + 0.485·17-s − 1.83·19-s − 0.834·23-s + 11/5·25-s + 0.192·27-s − 1.11·29-s + 0.718·31-s + 0.348·33-s + 0.986·37-s − 0.160·39-s − 1.87·41-s − 0.609·43-s + 0.596·45-s + 0.875·47-s − 49-s + 0.280·51-s − 0.274·53-s + 1.07·55-s − 1.05·57-s + 1.82·59-s + 1.28·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 624 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 624 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(624\)    =    \(2^{4} \cdot 3 \cdot 13\)
Sign: $1$
Analytic conductor: \(4.98266\)
Root analytic conductor: \(2.23218\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 624,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.372685272\)
\(L(\frac12)\) \(\approx\) \(2.372685272\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
13 \( 1 + T \)
good5 \( 1 - 4 T + p T^{2} \) 1.5.ae
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 - 14 T + p T^{2} \) 1.59.ao
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 14 T + p T^{2} \) 1.83.o
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.15794269434022573867939029827, −9.892497274915361873535985179047, −8.943402214761282290578247197554, −8.217111615393858677135023040041, −6.82576336993450810735269740334, −6.18574778583849864438867610565, −5.19839034221395538345933157261, −3.94825004599146973995971761943, −2.49937121389233024134417293034, −1.67948869184017392713797049524, 1.67948869184017392713797049524, 2.49937121389233024134417293034, 3.94825004599146973995971761943, 5.19839034221395538345933157261, 6.18574778583849864438867610565, 6.82576336993450810735269740334, 8.217111615393858677135023040041, 8.943402214761282290578247197554, 9.892497274915361873535985179047, 10.15794269434022573867939029827

Graph of the $Z$-function along the critical line