Properties

Label 2-77e2-1.1-c1-0-148
Degree $2$
Conductor $5929$
Sign $-1$
Analytic cond. $47.3433$
Root an. cond. $6.88064$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 2·3-s − 4-s − 5-s + 2·6-s + 3·8-s + 9-s + 10-s + 2·12-s + 13-s + 2·15-s − 16-s − 5·17-s − 18-s + 6·19-s + 20-s + 2·23-s − 6·24-s − 4·25-s − 26-s + 4·27-s − 9·29-s − 2·30-s + 2·31-s − 5·32-s + 5·34-s − 36-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.15·3-s − 1/2·4-s − 0.447·5-s + 0.816·6-s + 1.06·8-s + 1/3·9-s + 0.316·10-s + 0.577·12-s + 0.277·13-s + 0.516·15-s − 1/4·16-s − 1.21·17-s − 0.235·18-s + 1.37·19-s + 0.223·20-s + 0.417·23-s − 1.22·24-s − 4/5·25-s − 0.196·26-s + 0.769·27-s − 1.67·29-s − 0.365·30-s + 0.359·31-s − 0.883·32-s + 0.857·34-s − 1/6·36-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5929 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5929 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5929\)    =    \(7^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(47.3433\)
Root analytic conductor: \(6.88064\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5929,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad7 \( 1 \)
11 \( 1 \)
good2 \( 1 + T + p T^{2} \) 1.2.b
3 \( 1 + 2 T + p T^{2} \) 1.3.c
5 \( 1 + T + p T^{2} \) 1.5.b
13 \( 1 - T + p T^{2} \) 1.13.ab
17 \( 1 + 5 T + p T^{2} \) 1.17.f
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 + 9 T + p T^{2} \) 1.29.j
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 9 T + p T^{2} \) 1.89.aj
97 \( 1 - 13 T + p T^{2} \) 1.97.an
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.74876323699072704778810695090, −7.11362745110257617710521797400, −6.38296664456429484707652424372, −5.43069111134688314478692077104, −5.05042499311079542820546840649, −4.15190959135177339748970024081, −3.41971926023207922940384602095, −1.97805102262059112135043101795, −0.860092589317136083123344363004, 0, 0.860092589317136083123344363004, 1.97805102262059112135043101795, 3.41971926023207922940384602095, 4.15190959135177339748970024081, 5.05042499311079542820546840649, 5.43069111134688314478692077104, 6.38296664456429484707652424372, 7.11362745110257617710521797400, 7.74876323699072704778810695090

Graph of the $Z$-function along the critical line