Properties

Label 2-5808-1.1-c1-0-57
Degree $2$
Conductor $5808$
Sign $1$
Analytic cond. $46.3771$
Root an. cond. $6.81007$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 4·5-s − 7-s + 9-s − 2·13-s + 4·15-s + 4·17-s + 3·19-s − 21-s − 2·23-s + 11·25-s + 27-s + 6·29-s + 5·31-s − 4·35-s + 3·37-s − 2·39-s − 2·41-s − 12·43-s + 4·45-s − 2·47-s − 6·49-s + 4·51-s + 6·53-s + 3·57-s + 10·59-s + 3·61-s + ⋯
L(s)  = 1  + 0.577·3-s + 1.78·5-s − 0.377·7-s + 1/3·9-s − 0.554·13-s + 1.03·15-s + 0.970·17-s + 0.688·19-s − 0.218·21-s − 0.417·23-s + 11/5·25-s + 0.192·27-s + 1.11·29-s + 0.898·31-s − 0.676·35-s + 0.493·37-s − 0.320·39-s − 0.312·41-s − 1.82·43-s + 0.596·45-s − 0.291·47-s − 6/7·49-s + 0.560·51-s + 0.824·53-s + 0.397·57-s + 1.30·59-s + 0.384·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5808 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5808 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5808\)    =    \(2^{4} \cdot 3 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(46.3771\)
Root analytic conductor: \(6.81007\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5808,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.716297501\)
\(L(\frac12)\) \(\approx\) \(3.716297501\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
11 \( 1 \)
good5 \( 1 - 4 T + p T^{2} \) 1.5.ae
7 \( 1 + T + p T^{2} \) 1.7.b
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 - 3 T + p T^{2} \) 1.19.ad
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 - 3 T + p T^{2} \) 1.37.ad
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 - 3 T + p T^{2} \) 1.61.ad
67 \( 1 - T + p T^{2} \) 1.67.ab
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 + 11 T + p T^{2} \) 1.79.l
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 - 5 T + p T^{2} \) 1.97.af
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.270084621494176042041252662882, −7.32057142730538592585513756279, −6.62894911055050850603554095397, −6.00175857633146874298631346404, −5.28227304204569921820826185035, −4.63110352385300812194491410922, −3.34963292037783635548971760769, −2.76335125573149397615768643500, −1.94820519885700493081501567293, −1.05469196837130809633560747721, 1.05469196837130809633560747721, 1.94820519885700493081501567293, 2.76335125573149397615768643500, 3.34963292037783635548971760769, 4.63110352385300812194491410922, 5.28227304204569921820826185035, 6.00175857633146874298631346404, 6.62894911055050850603554095397, 7.32057142730538592585513756279, 8.270084621494176042041252662882

Graph of the $Z$-function along the critical line