Properties

Label 5808.bh
Number of curves $1$
Conductor $5808$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bh1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 5808.bh1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 4 T + 5 T^{2}\) 1.5.ae
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 - 4 T + 17 T^{2}\) 1.17.ae
\(19\) \( 1 - 3 T + 19 T^{2}\) 1.19.ad
\(23\) \( 1 + 2 T + 23 T^{2}\) 1.23.c
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 5808.bh do not have complex multiplication.

Modular form 5808.2.a.bh

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + 4 q^{5} - q^{7} + q^{9} - 2 q^{13} + 4 q^{15} + 4 q^{17} + 3 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 5808.bh

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5808.bh1 5808bi1 \([0, 1, 0, 7099, 45747]\) \(45056/27\) \(-23706377367552\) \([]\) \(15840\) \(1.2557\) \(\Gamma_0(N)\)-optimal