Properties

Label 2-57330-1.1-c1-0-127
Degree $2$
Conductor $57330$
Sign $-1$
Analytic cond. $457.782$
Root an. cond. $21.3958$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 5-s + 8-s + 10-s + 6·11-s − 13-s + 16-s − 6·17-s − 2·19-s + 20-s + 6·22-s − 6·23-s + 25-s − 26-s + 6·29-s − 2·31-s + 32-s − 6·34-s + 2·37-s − 2·38-s + 40-s − 6·41-s + 2·43-s + 6·44-s − 6·46-s − 12·47-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.447·5-s + 0.353·8-s + 0.316·10-s + 1.80·11-s − 0.277·13-s + 1/4·16-s − 1.45·17-s − 0.458·19-s + 0.223·20-s + 1.27·22-s − 1.25·23-s + 1/5·25-s − 0.196·26-s + 1.11·29-s − 0.359·31-s + 0.176·32-s − 1.02·34-s + 0.328·37-s − 0.324·38-s + 0.158·40-s − 0.937·41-s + 0.304·43-s + 0.904·44-s − 0.884·46-s − 1.75·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 57330 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 57330 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(57330\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(457.782\)
Root analytic conductor: \(21.3958\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 57330,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 - T \)
7 \( 1 \)
13 \( 1 + T \)
good11 \( 1 - 6 T + p T^{2} \) 1.11.ag
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.56741957495225, −14.10332216278627, −13.66773168428078, −13.19340943235951, −12.55309703065570, −12.16316544138736, −11.58912059797294, −11.24136007244568, −10.62992827270496, −9.943464692054764, −9.560432095125895, −8.941298740480682, −8.423829261678510, −7.874856017599723, −6.864845693853483, −6.674159115037451, −6.268649721013508, −5.650596096343044, −4.790779038816361, −4.440891540168859, −3.853307946855209, −3.257554417051254, −2.356635548164774, −1.881539498070126, −1.197941505209563, 0, 1.197941505209563, 1.881539498070126, 2.356635548164774, 3.257554417051254, 3.853307946855209, 4.440891540168859, 4.790779038816361, 5.650596096343044, 6.268649721013508, 6.674159115037451, 6.864845693853483, 7.874856017599723, 8.423829261678510, 8.941298740480682, 9.560432095125895, 9.943464692054764, 10.62992827270496, 11.24136007244568, 11.58912059797294, 12.16316544138736, 12.55309703065570, 13.19340943235951, 13.66773168428078, 14.10332216278627, 14.56741957495225

Graph of the $Z$-function along the critical line