Properties

Label 2-5700-1.1-c1-0-35
Degree $2$
Conductor $5700$
Sign $-1$
Analytic cond. $45.5147$
Root an. cond. $6.74646$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·7-s + 9-s + 4·13-s − 6·17-s + 19-s + 2·21-s − 6·23-s − 27-s + 6·29-s + 8·31-s + 4·37-s − 4·39-s − 6·41-s + 10·43-s − 6·47-s − 3·49-s + 6·51-s − 12·53-s − 57-s + 12·59-s − 10·61-s − 2·63-s + 4·67-s + 6·69-s − 14·73-s + 8·79-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.755·7-s + 1/3·9-s + 1.10·13-s − 1.45·17-s + 0.229·19-s + 0.436·21-s − 1.25·23-s − 0.192·27-s + 1.11·29-s + 1.43·31-s + 0.657·37-s − 0.640·39-s − 0.937·41-s + 1.52·43-s − 0.875·47-s − 3/7·49-s + 0.840·51-s − 1.64·53-s − 0.132·57-s + 1.56·59-s − 1.28·61-s − 0.251·63-s + 0.488·67-s + 0.722·69-s − 1.63·73-s + 0.900·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5700\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(45.5147\)
Root analytic conductor: \(6.74646\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5700,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
19 \( 1 - T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + 6 T + p T^{2} \) 1.17.g
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 18 T + p T^{2} \) 1.83.as
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.86201280320023629368268323452, −6.67380974090865637446420647887, −6.44326962312260980200343913920, −5.84213731011766911038320732004, −4.76026404760386656591663844528, −4.18984691243596275122350721193, −3.29346001739995212283696395399, −2.35602169951602417312881218236, −1.18851669072197634226947877736, 0, 1.18851669072197634226947877736, 2.35602169951602417312881218236, 3.29346001739995212283696395399, 4.18984691243596275122350721193, 4.76026404760386656591663844528, 5.84213731011766911038320732004, 6.44326962312260980200343913920, 6.67380974090865637446420647887, 7.86201280320023629368268323452

Graph of the $Z$-function along the critical line