Properties

Label 5700.a
Number of curves $4$
Conductor $5700$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 5700.a have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(19\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 5700.a do not have complex multiplication.

Modular form 5700.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 2 q^{7} + q^{9} + 4 q^{13} - 6 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 5700.a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5700.a1 5700f4 \([0, -1, 0, -923908, -341389688]\) \(21804712949838544/8680921875\) \(34723687500000000\) \([2]\) \(82944\) \(2.1378\)  
5700.a2 5700f3 \([0, -1, 0, -66533, -3583938]\) \(130287139815424/52926616125\) \(13231654031250000\) \([2]\) \(41472\) \(1.7912\)  
5700.a3 5700f2 \([0, -1, 0, -32908, 1726312]\) \(985329269584/252434475\) \(1009737900000000\) \([2]\) \(27648\) \(1.5885\)  
5700.a4 5700f1 \([0, -1, 0, -30533, 2063562]\) \(12592337649664/1315845\) \(328961250000\) \([2]\) \(13824\) \(1.2419\) \(\Gamma_0(N)\)-optimal