Properties

Label 2-56144-1.1-c1-0-9
Degree $2$
Conductor $56144$
Sign $-1$
Analytic cond. $448.312$
Root an. cond. $21.1733$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 3·5-s − 4·7-s − 2·9-s + 2·13-s − 3·15-s + 4·17-s − 6·19-s − 4·21-s + 3·23-s + 4·25-s − 5·27-s + 29-s + 9·31-s + 12·35-s − 7·37-s + 2·39-s + 8·41-s − 8·43-s + 6·45-s − 8·47-s + 9·49-s + 4·51-s − 6·53-s − 6·57-s − 7·59-s − 6·61-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.34·5-s − 1.51·7-s − 2/3·9-s + 0.554·13-s − 0.774·15-s + 0.970·17-s − 1.37·19-s − 0.872·21-s + 0.625·23-s + 4/5·25-s − 0.962·27-s + 0.185·29-s + 1.61·31-s + 2.02·35-s − 1.15·37-s + 0.320·39-s + 1.24·41-s − 1.21·43-s + 0.894·45-s − 1.16·47-s + 9/7·49-s + 0.560·51-s − 0.824·53-s − 0.794·57-s − 0.911·59-s − 0.768·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 56144 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 56144 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(56144\)    =    \(2^{4} \cdot 11^{2} \cdot 29\)
Sign: $-1$
Analytic conductor: \(448.312\)
Root analytic conductor: \(21.1733\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 56144,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
11 \( 1 \)
29 \( 1 - T \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
5 \( 1 + 3 T + p T^{2} \) 1.5.d
7 \( 1 + 4 T + p T^{2} \) 1.7.e
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
31 \( 1 - 9 T + p T^{2} \) 1.31.aj
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 - 8 T + p T^{2} \) 1.41.ai
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 7 T + p T^{2} \) 1.59.h
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + 3 T + p T^{2} \) 1.67.d
71 \( 1 - T + p T^{2} \) 1.71.ab
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 6 T + p T^{2} \) 1.79.g
83 \( 1 - 14 T + p T^{2} \) 1.83.ao
89 \( 1 + 7 T + p T^{2} \) 1.89.h
97 \( 1 - 7 T + p T^{2} \) 1.97.ah
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.81030200939035, −14.13571192445480, −13.58773367443705, −13.13936715308033, −12.55996362305714, −12.16198542408608, −11.69667547307785, −11.05085961306472, −10.58669432069745, −9.973312405532090, −9.423453352982670, −8.857321028988557, −8.327068421573641, −8.044581653480860, −7.384200605039726, −6.701019983273954, −6.287803144898635, −5.763323961513529, −4.807370230637878, −4.265455153892470, −3.515699262198488, −3.206360406796186, −2.837040642659042, −1.795115835850592, −0.6788206564043664, 0, 0.6788206564043664, 1.795115835850592, 2.837040642659042, 3.206360406796186, 3.515699262198488, 4.265455153892470, 4.807370230637878, 5.763323961513529, 6.287803144898635, 6.701019983273954, 7.384200605039726, 8.044581653480860, 8.327068421573641, 8.857321028988557, 9.423453352982670, 9.973312405532090, 10.58669432069745, 11.05085961306472, 11.69667547307785, 12.16198542408608, 12.55996362305714, 13.13936715308033, 13.58773367443705, 14.13571192445480, 14.81030200939035

Graph of the $Z$-function along the critical line