Properties

Label 2-54150-1.1-c1-0-10
Degree $2$
Conductor $54150$
Sign $1$
Analytic cond. $432.389$
Root an. cond. $20.7939$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 6-s − 8-s + 9-s − 4·11-s + 12-s − 2·13-s + 16-s − 6·17-s − 18-s + 4·22-s + 6·23-s − 24-s + 2·26-s + 27-s + 2·29-s + 6·31-s − 32-s − 4·33-s + 6·34-s + 36-s + 10·37-s − 2·39-s − 6·43-s − 4·44-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.408·6-s − 0.353·8-s + 1/3·9-s − 1.20·11-s + 0.288·12-s − 0.554·13-s + 1/4·16-s − 1.45·17-s − 0.235·18-s + 0.852·22-s + 1.25·23-s − 0.204·24-s + 0.392·26-s + 0.192·27-s + 0.371·29-s + 1.07·31-s − 0.176·32-s − 0.696·33-s + 1.02·34-s + 1/6·36-s + 1.64·37-s − 0.320·39-s − 0.914·43-s − 0.603·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 54150 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 54150 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(54150\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(432.389\)
Root analytic conductor: \(20.7939\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 54150,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.232073971\)
\(L(\frac12)\) \(\approx\) \(1.232073971\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 \)
19 \( 1 \)
good7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 6 T + p T^{2} \) 1.17.g
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 2 T + p T^{2} \) 1.59.c
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 16 T + p T^{2} \) 1.73.q
79 \( 1 - 14 T + p T^{2} \) 1.79.ao
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 4 T + p T^{2} \) 1.89.e
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.68103877982390, −13.71816232805287, −13.50279802377837, −12.91039141996678, −12.49600717011913, −11.79269742932924, −11.17760747624289, −10.76903325031135, −10.30966100241927, −9.636444416572448, −9.283535846409796, −8.724323636507666, −8.114784641085242, −7.783221784191028, −7.218299550661225, −6.529482304605005, −6.202073503331704, −5.128120851876190, −4.791740209522193, −4.147316537216792, −3.076186710255178, −2.753732108143346, −2.203206418072839, −1.355766673359383, −0.4158752291620293, 0.4158752291620293, 1.355766673359383, 2.203206418072839, 2.753732108143346, 3.076186710255178, 4.147316537216792, 4.791740209522193, 5.128120851876190, 6.202073503331704, 6.529482304605005, 7.218299550661225, 7.783221784191028, 8.114784641085242, 8.724323636507666, 9.283535846409796, 9.636444416572448, 10.30966100241927, 10.76903325031135, 11.17760747624289, 11.79269742932924, 12.49600717011913, 12.91039141996678, 13.50279802377837, 13.71816232805287, 14.68103877982390

Graph of the $Z$-function along the critical line