Properties

Label 2-53371-1.1-c1-0-0
Degree $2$
Conductor $53371$
Sign $1$
Analytic cond. $426.169$
Root an. cond. $20.6438$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 2·4-s + 3·5-s − 7-s − 3·9-s − 6·10-s + 3·11-s + 2·14-s − 4·16-s − 3·17-s + 6·18-s + 19-s + 6·20-s − 6·22-s + 8·23-s + 4·25-s − 2·28-s + 2·29-s + 2·31-s + 8·32-s + 6·34-s − 3·35-s − 6·36-s − 4·37-s − 2·38-s − 6·41-s − 5·43-s + ⋯
L(s)  = 1  − 1.41·2-s + 4-s + 1.34·5-s − 0.377·7-s − 9-s − 1.89·10-s + 0.904·11-s + 0.534·14-s − 16-s − 0.727·17-s + 1.41·18-s + 0.229·19-s + 1.34·20-s − 1.27·22-s + 1.66·23-s + 4/5·25-s − 0.377·28-s + 0.371·29-s + 0.359·31-s + 1.41·32-s + 1.02·34-s − 0.507·35-s − 36-s − 0.657·37-s − 0.324·38-s − 0.937·41-s − 0.762·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 53371 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 53371 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(53371\)    =    \(19 \cdot 53^{2}\)
Sign: $1$
Analytic conductor: \(426.169\)
Root analytic conductor: \(20.6438\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 53371,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9978180841\)
\(L(\frac12)\) \(\approx\) \(0.9978180841\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad19 \( 1 - T \)
53 \( 1 \)
good2 \( 1 + p T + p T^{2} \) 1.2.c
3 \( 1 + p T^{2} \) 1.3.a
5 \( 1 - 3 T + p T^{2} \) 1.5.ad
7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 + 3 T + p T^{2} \) 1.17.d
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 5 T + p T^{2} \) 1.43.f
47 \( 1 - 13 T + p T^{2} \) 1.47.an
59 \( 1 + 14 T + p T^{2} \) 1.59.o
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 10 T + p T^{2} \) 1.71.k
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 + 2 T + p T^{2} \) 1.79.c
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 16 T + p T^{2} \) 1.89.aq
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.53909203080144, −13.67801488418822, −13.59980559979639, −13.15172826341590, −12.11188822478844, −11.87961658931339, −11.10404657312045, −10.60116971449683, −10.36466795696918, −9.503863866549779, −9.265298668849551, −8.908018317037550, −8.486161044776413, −7.735403526473247, −6.994637255208036, −6.611228857690926, −6.156156094424114, −5.458574407481911, −4.873447227447098, −4.127360804479137, −2.967189061509616, −2.790276303433025, −1.723263948561855, −1.421605153386742, −0.4448877339189154, 0.4448877339189154, 1.421605153386742, 1.723263948561855, 2.790276303433025, 2.967189061509616, 4.127360804479137, 4.873447227447098, 5.458574407481911, 6.156156094424114, 6.611228857690926, 6.994637255208036, 7.735403526473247, 8.486161044776413, 8.908018317037550, 9.265298668849551, 9.503863866549779, 10.36466795696918, 10.60116971449683, 11.10404657312045, 11.87961658931339, 12.11188822478844, 13.15172826341590, 13.59980559979639, 13.67801488418822, 14.53909203080144

Graph of the $Z$-function along the critical line