Properties

Label 2-52800-1.1-c1-0-195
Degree $2$
Conductor $52800$
Sign $1$
Analytic cond. $421.610$
Root an. cond. $20.5331$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·7-s + 9-s − 11-s − 4·13-s − 4·17-s + 2·21-s − 4·23-s − 27-s + 6·29-s + 8·31-s + 33-s − 2·37-s + 4·39-s − 10·41-s − 10·43-s − 12·47-s − 3·49-s + 4·51-s + 6·53-s − 12·59-s − 10·61-s − 2·63-s + 8·67-s + 4·69-s − 4·73-s + 2·77-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.755·7-s + 1/3·9-s − 0.301·11-s − 1.10·13-s − 0.970·17-s + 0.436·21-s − 0.834·23-s − 0.192·27-s + 1.11·29-s + 1.43·31-s + 0.174·33-s − 0.328·37-s + 0.640·39-s − 1.56·41-s − 1.52·43-s − 1.75·47-s − 3/7·49-s + 0.560·51-s + 0.824·53-s − 1.56·59-s − 1.28·61-s − 0.251·63-s + 0.977·67-s + 0.481·69-s − 0.468·73-s + 0.227·77-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 52800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 52800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(52800\)    =    \(2^{6} \cdot 3 \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(421.610\)
Root analytic conductor: \(20.5331\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 52800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
11 \( 1 + T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 2 T + p T^{2} \) 1.83.c
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.17434915253380, −14.42865450508857, −13.81942832315170, −13.43330893676264, −12.89323592845065, −12.38155556739558, −11.80318491120325, −11.64825028002908, −10.78300900386080, −10.17860257737033, −9.976885704927926, −9.482940057324331, −8.629088416600439, −8.231719794911262, −7.590934239158566, −6.777542476993487, −6.591518588257089, −6.079974293936501, −5.180104056209355, −4.797083336890517, −4.311207619222351, −3.358897938335645, −2.873365351132614, −2.112784108987635, −1.345501505185684, 0, 0, 1.345501505185684, 2.112784108987635, 2.873365351132614, 3.358897938335645, 4.311207619222351, 4.797083336890517, 5.180104056209355, 6.079974293936501, 6.591518588257089, 6.777542476993487, 7.590934239158566, 8.231719794911262, 8.629088416600439, 9.482940057324331, 9.976885704927926, 10.17860257737033, 10.78300900386080, 11.64825028002908, 11.80318491120325, 12.38155556739558, 12.89323592845065, 13.43330893676264, 13.81942832315170, 14.42865450508857, 15.17434915253380

Graph of the $Z$-function along the critical line