Properties

Label 2-52416-1.1-c1-0-17
Degree $2$
Conductor $52416$
Sign $1$
Analytic cond. $418.543$
Root an. cond. $20.4583$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 7-s − 4·11-s + 13-s − 6·17-s + 4·19-s − 25-s − 6·29-s − 8·31-s + 2·35-s − 10·37-s + 6·41-s − 4·43-s − 4·47-s + 49-s + 10·53-s − 8·55-s + 4·59-s + 6·61-s + 2·65-s + 8·67-s − 10·73-s − 4·77-s − 8·79-s + 4·83-s − 12·85-s + 6·89-s + ⋯
L(s)  = 1  + 0.894·5-s + 0.377·7-s − 1.20·11-s + 0.277·13-s − 1.45·17-s + 0.917·19-s − 1/5·25-s − 1.11·29-s − 1.43·31-s + 0.338·35-s − 1.64·37-s + 0.937·41-s − 0.609·43-s − 0.583·47-s + 1/7·49-s + 1.37·53-s − 1.07·55-s + 0.520·59-s + 0.768·61-s + 0.248·65-s + 0.977·67-s − 1.17·73-s − 0.455·77-s − 0.900·79-s + 0.439·83-s − 1.30·85-s + 0.635·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 52416 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 52416 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(52416\)    =    \(2^{6} \cdot 3^{2} \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(418.543\)
Root analytic conductor: \(20.4583\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 52416,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.725222411\)
\(L(\frac12)\) \(\approx\) \(1.725222411\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - T \)
13 \( 1 - T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
11 \( 1 + 4 T + p T^{2} \) 1.11.e
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.34681327677523, −13.94272406457671, −13.32840091766881, −13.07796555939376, −12.69100731116018, −11.71796500147519, −11.41127021824876, −10.83477707858451, −10.30808553394766, −9.937751288310324, −9.060963821261051, −8.986292995391081, −8.189684505291860, −7.584858034225834, −7.097051619776797, −6.531383186335686, −5.650966477401667, −5.460048319076159, −4.940257374957164, −4.079203592580728, −3.498487462149274, −2.642973929531742, −2.047042208869259, −1.622795215873118, −0.4300529851582359, 0.4300529851582359, 1.622795215873118, 2.047042208869259, 2.642973929531742, 3.498487462149274, 4.079203592580728, 4.940257374957164, 5.460048319076159, 5.650966477401667, 6.531383186335686, 7.097051619776797, 7.584858034225834, 8.189684505291860, 8.986292995391081, 9.060963821261051, 9.937751288310324, 10.30808553394766, 10.83477707858451, 11.41127021824876, 11.71796500147519, 12.69100731116018, 13.07796555939376, 13.32840091766881, 13.94272406457671, 14.34681327677523

Graph of the $Z$-function along the critical line