Properties

Label 2-522-1.1-c1-0-4
Degree $2$
Conductor $522$
Sign $1$
Analytic cond. $4.16819$
Root an. cond. $2.04161$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 2·5-s + 4·7-s + 8-s − 2·10-s + 2·13-s + 4·14-s + 16-s + 2·17-s − 2·20-s + 4·23-s − 25-s + 2·26-s + 4·28-s − 29-s + 6·31-s + 32-s + 2·34-s − 8·35-s − 4·37-s − 2·40-s + 2·41-s + 4·43-s + 4·46-s − 8·47-s + 9·49-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.894·5-s + 1.51·7-s + 0.353·8-s − 0.632·10-s + 0.554·13-s + 1.06·14-s + 1/4·16-s + 0.485·17-s − 0.447·20-s + 0.834·23-s − 1/5·25-s + 0.392·26-s + 0.755·28-s − 0.185·29-s + 1.07·31-s + 0.176·32-s + 0.342·34-s − 1.35·35-s − 0.657·37-s − 0.316·40-s + 0.312·41-s + 0.609·43-s + 0.589·46-s − 1.16·47-s + 9/7·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 522 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 522 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(522\)    =    \(2 \cdot 3^{2} \cdot 29\)
Sign: $1$
Analytic conductor: \(4.16819\)
Root analytic conductor: \(2.04161\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 522,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.253591182\)
\(L(\frac12)\) \(\approx\) \(2.253591182\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
29 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 14 T + p T^{2} \) 1.53.o
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 16 T + p T^{2} \) 1.71.q
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 6 T + p T^{2} \) 1.79.g
83 \( 1 + 2 T + p T^{2} \) 1.83.c
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.23088681177259931213600888425, −10.31022962994137309665668010111, −8.850929506389471866653432728217, −7.978909275244120811387358467011, −7.40719357170324726064049984804, −6.12027842085336087630745331402, −4.98617740641702215386206821415, −4.29411921029809728013580242122, −3.13738525881404839811628728846, −1.49549994584612613248947406224, 1.49549994584612613248947406224, 3.13738525881404839811628728846, 4.29411921029809728013580242122, 4.98617740641702215386206821415, 6.12027842085336087630745331402, 7.40719357170324726064049984804, 7.978909275244120811387358467011, 8.850929506389471866653432728217, 10.31022962994137309665668010111, 11.23088681177259931213600888425

Graph of the $Z$-function along the critical line