Properties

Label 2-51714-1.1-c1-0-14
Degree $2$
Conductor $51714$
Sign $-1$
Analytic cond. $412.938$
Root an. cond. $20.3208$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 2·5-s + 8-s − 2·10-s − 4·11-s + 16-s − 17-s − 4·19-s − 2·20-s − 4·22-s − 25-s + 10·29-s − 8·31-s + 32-s − 34-s + 2·37-s − 4·38-s − 2·40-s + 10·41-s + 12·43-s − 4·44-s − 7·49-s − 50-s − 6·53-s + 8·55-s + 10·58-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.894·5-s + 0.353·8-s − 0.632·10-s − 1.20·11-s + 1/4·16-s − 0.242·17-s − 0.917·19-s − 0.447·20-s − 0.852·22-s − 1/5·25-s + 1.85·29-s − 1.43·31-s + 0.176·32-s − 0.171·34-s + 0.328·37-s − 0.648·38-s − 0.316·40-s + 1.56·41-s + 1.82·43-s − 0.603·44-s − 49-s − 0.141·50-s − 0.824·53-s + 1.07·55-s + 1.31·58-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 51714 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 51714 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(51714\)    =    \(2 \cdot 3^{2} \cdot 13^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(412.938\)
Root analytic conductor: \(20.3208\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 51714,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
13 \( 1 \)
17 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + 4 T + p T^{2} \) 1.11.e
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 10 T + p T^{2} \) 1.29.ak
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.69268085396058, −14.26846429412790, −13.77620632924828, −13.00018758906546, −12.68674642599943, −12.45870774419958, −11.59381322679460, −11.24649908747256, −10.73849104847743, −10.32021020134128, −9.631099639307153, −8.885312661675985, −8.348828446398061, −7.751178174736247, −7.474328176120557, −6.773622833459754, −6.092162601048353, −5.661704755974815, −4.859097576296529, −4.436792992210715, −3.930229296556916, −3.187226993238680, −2.580529433080218, −2.028475772612476, −0.8779421951309576, 0, 0.8779421951309576, 2.028475772612476, 2.580529433080218, 3.187226993238680, 3.930229296556916, 4.436792992210715, 4.859097576296529, 5.661704755974815, 6.092162601048353, 6.773622833459754, 7.474328176120557, 7.751178174736247, 8.348828446398061, 8.885312661675985, 9.631099639307153, 10.32021020134128, 10.73849104847743, 11.24649908747256, 11.59381322679460, 12.45870774419958, 12.68674642599943, 13.00018758906546, 13.77620632924828, 14.26846429412790, 14.69268085396058

Graph of the $Z$-function along the critical line