Properties

Label 2-51376-1.1-c1-0-9
Degree $2$
Conductor $51376$
Sign $-1$
Analytic cond. $410.239$
Root an. cond. $20.2543$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 2·7-s − 3·9-s − 6·11-s + 17-s − 19-s + 3·23-s − 25-s − 6·29-s − 9·31-s − 4·35-s + 37-s − 3·41-s + 3·43-s + 6·45-s − 6·47-s − 3·49-s + 6·53-s + 12·55-s + 5·59-s + 7·61-s − 6·63-s + 3·67-s + 8·71-s + 6·73-s − 12·77-s + 4·79-s + ⋯
L(s)  = 1  − 0.894·5-s + 0.755·7-s − 9-s − 1.80·11-s + 0.242·17-s − 0.229·19-s + 0.625·23-s − 1/5·25-s − 1.11·29-s − 1.61·31-s − 0.676·35-s + 0.164·37-s − 0.468·41-s + 0.457·43-s + 0.894·45-s − 0.875·47-s − 3/7·49-s + 0.824·53-s + 1.61·55-s + 0.650·59-s + 0.896·61-s − 0.755·63-s + 0.366·67-s + 0.949·71-s + 0.702·73-s − 1.36·77-s + 0.450·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 51376 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 51376 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(51376\)    =    \(2^{4} \cdot 13^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(410.239\)
Root analytic conductor: \(20.2543\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 51376,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
13 \( 1 \)
19 \( 1 + T \)
good3 \( 1 + p T^{2} \) 1.3.a
5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + 6 T + p T^{2} \) 1.11.g
17 \( 1 - T + p T^{2} \) 1.17.ab
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 9 T + p T^{2} \) 1.31.j
37 \( 1 - T + p T^{2} \) 1.37.ab
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 - 3 T + p T^{2} \) 1.43.ad
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 5 T + p T^{2} \) 1.59.af
61 \( 1 - 7 T + p T^{2} \) 1.61.ah
67 \( 1 - 3 T + p T^{2} \) 1.67.ad
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + T + p T^{2} \) 1.97.b
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.89727968905440, −14.32644836389886, −13.76491074081426, −13.04015848325927, −12.83861022610002, −12.16481772960294, −11.45965917695916, −11.13758831773239, −10.93787442426814, −10.15287077275743, −9.600748382860582, −8.777467521760650, −8.416869525381391, −7.913351275500421, −7.500152066906022, −7.057102096902125, −6.044746910064079, −5.499290800493252, −5.101856764825320, −4.577729693560684, −3.528836851840039, −3.409575822961894, −2.337631845467193, −2.008199077480847, −0.6950684133303199, 0, 0.6950684133303199, 2.008199077480847, 2.337631845467193, 3.409575822961894, 3.528836851840039, 4.577729693560684, 5.101856764825320, 5.499290800493252, 6.044746910064079, 7.057102096902125, 7.500152066906022, 7.913351275500421, 8.416869525381391, 8.777467521760650, 9.600748382860582, 10.15287077275743, 10.93787442426814, 11.13758831773239, 11.45965917695916, 12.16481772960294, 12.83861022610002, 13.04015848325927, 13.76491074081426, 14.32644836389886, 14.89727968905440

Graph of the $Z$-function along the critical line