Properties

Label 2-51376-1.1-c1-0-6
Degree $2$
Conductor $51376$
Sign $-1$
Analytic cond. $410.239$
Root an. cond. $20.2543$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 2·7-s − 3·9-s − 2·11-s − 7·17-s + 19-s + 5·23-s − 25-s + 2·29-s − 3·31-s + 4·35-s − 7·37-s − 7·41-s + 9·43-s + 6·45-s − 2·47-s − 3·49-s + 6·53-s + 4·55-s + 3·59-s + 11·61-s + 6·63-s − 3·67-s − 16·71-s − 2·73-s + 4·77-s + 4·79-s + ⋯
L(s)  = 1  − 0.894·5-s − 0.755·7-s − 9-s − 0.603·11-s − 1.69·17-s + 0.229·19-s + 1.04·23-s − 1/5·25-s + 0.371·29-s − 0.538·31-s + 0.676·35-s − 1.15·37-s − 1.09·41-s + 1.37·43-s + 0.894·45-s − 0.291·47-s − 3/7·49-s + 0.824·53-s + 0.539·55-s + 0.390·59-s + 1.40·61-s + 0.755·63-s − 0.366·67-s − 1.89·71-s − 0.234·73-s + 0.455·77-s + 0.450·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 51376 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 51376 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(51376\)    =    \(2^{4} \cdot 13^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(410.239\)
Root analytic conductor: \(20.2543\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 51376,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
13 \( 1 \)
19 \( 1 - T \)
good3 \( 1 + p T^{2} \) 1.3.a
5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + 2 T + p T^{2} \) 1.11.c
17 \( 1 + 7 T + p T^{2} \) 1.17.h
23 \( 1 - 5 T + p T^{2} \) 1.23.af
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 3 T + p T^{2} \) 1.31.d
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 + 7 T + p T^{2} \) 1.41.h
43 \( 1 - 9 T + p T^{2} \) 1.43.aj
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 - 11 T + p T^{2} \) 1.61.al
67 \( 1 + 3 T + p T^{2} \) 1.67.d
71 \( 1 + 16 T + p T^{2} \) 1.71.q
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 11 T + p T^{2} \) 1.97.al
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.75027603694700, −14.33813576562307, −13.54060467688752, −13.24471597398023, −12.79752046072590, −12.11138106521358, −11.53351006983690, −11.36177549180633, −10.53736856925914, −10.35486838787172, −9.370854082218023, −8.955165454857992, −8.546187222975199, −7.988654599759549, −7.261565395655090, −6.895521551059433, −6.284989541129331, −5.601430717879709, −5.054585525475256, −4.406212933281584, −3.722475557128545, −3.159637736056161, −2.622192949916514, −1.889302719052556, −0.6033133616752534, 0, 0.6033133616752534, 1.889302719052556, 2.622192949916514, 3.159637736056161, 3.722475557128545, 4.406212933281584, 5.054585525475256, 5.601430717879709, 6.284989541129331, 6.895521551059433, 7.261565395655090, 7.988654599759549, 8.546187222975199, 8.955165454857992, 9.370854082218023, 10.35486838787172, 10.53736856925914, 11.36177549180633, 11.53351006983690, 12.11138106521358, 12.79752046072590, 13.24471597398023, 13.54060467688752, 14.33813576562307, 14.75027603694700

Graph of the $Z$-function along the critical line