Properties

Label 2-49343-1.1-c1-0-2
Degree $2$
Conductor $49343$
Sign $-1$
Analytic cond. $394.005$
Root an. cond. $19.8495$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 2·4-s + 3·5-s − 3·9-s + 6·10-s + 3·11-s − 4·16-s + 3·17-s − 6·18-s + 19-s + 6·20-s + 6·22-s − 8·23-s + 4·25-s + 2·29-s + 2·31-s − 8·32-s + 6·34-s − 6·36-s − 4·37-s + 2·38-s − 6·41-s − 5·43-s + 6·44-s − 9·45-s − 16·46-s − 13·47-s + ⋯
L(s)  = 1  + 1.41·2-s + 4-s + 1.34·5-s − 9-s + 1.89·10-s + 0.904·11-s − 16-s + 0.727·17-s − 1.41·18-s + 0.229·19-s + 1.34·20-s + 1.27·22-s − 1.66·23-s + 4/5·25-s + 0.371·29-s + 0.359·31-s − 1.41·32-s + 1.02·34-s − 36-s − 0.657·37-s + 0.324·38-s − 0.937·41-s − 0.762·43-s + 0.904·44-s − 1.34·45-s − 2.35·46-s − 1.89·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 49343 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 49343 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(49343\)    =    \(7^{2} \cdot 19 \cdot 53\)
Sign: $-1$
Analytic conductor: \(394.005\)
Root analytic conductor: \(19.8495\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 49343,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad7 \( 1 \)
19 \( 1 - T \)
53 \( 1 + T \)
good2 \( 1 - p T + p T^{2} \) 1.2.ac
3 \( 1 + p T^{2} \) 1.3.a
5 \( 1 - 3 T + p T^{2} \) 1.5.ad
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 5 T + p T^{2} \) 1.43.f
47 \( 1 + 13 T + p T^{2} \) 1.47.n
59 \( 1 - 14 T + p T^{2} \) 1.59.ao
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 10 T + p T^{2} \) 1.71.ak
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 - 2 T + p T^{2} \) 1.79.ac
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 16 T + p T^{2} \) 1.89.q
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.45125126522968, −14.29124128789160, −13.80687370802233, −13.44308818457656, −12.90855313437283, −12.24974880876372, −11.74059489525096, −11.62437201412642, −10.76511074855956, −10.01802263137227, −9.732743233778806, −9.178582638859424, −8.353277606297797, −8.158891202590528, −6.901972425110018, −6.592141696322275, −6.061691051793395, −5.567124065151933, −5.222201192134486, −4.568133253540339, −3.667675640341651, −3.412691789360099, −2.555924097808153, −2.039628968360577, −1.306234493152241, 0, 1.306234493152241, 2.039628968360577, 2.555924097808153, 3.412691789360099, 3.667675640341651, 4.568133253540339, 5.222201192134486, 5.567124065151933, 6.061691051793395, 6.592141696322275, 6.901972425110018, 8.158891202590528, 8.353277606297797, 9.178582638859424, 9.732743233778806, 10.01802263137227, 10.76511074855956, 11.62437201412642, 11.74059489525096, 12.24974880876372, 12.90855313437283, 13.44308818457656, 13.80687370802233, 14.29124128789160, 14.45125126522968

Graph of the $Z$-function along the critical line