Properties

Label 2-48552-1.1-c1-0-4
Degree $2$
Conductor $48552$
Sign $1$
Analytic cond. $387.689$
Root an. cond. $19.6898$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s − 7-s + 9-s + 11-s + 13-s − 15-s + 4·19-s − 21-s − 4·23-s − 4·25-s + 27-s − 10·29-s + 2·31-s + 33-s + 35-s + 5·37-s + 39-s − 12·41-s + 7·43-s − 45-s + 6·47-s + 49-s − 53-s − 55-s + 4·57-s − 8·61-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s − 0.377·7-s + 1/3·9-s + 0.301·11-s + 0.277·13-s − 0.258·15-s + 0.917·19-s − 0.218·21-s − 0.834·23-s − 4/5·25-s + 0.192·27-s − 1.85·29-s + 0.359·31-s + 0.174·33-s + 0.169·35-s + 0.821·37-s + 0.160·39-s − 1.87·41-s + 1.06·43-s − 0.149·45-s + 0.875·47-s + 1/7·49-s − 0.137·53-s − 0.134·55-s + 0.529·57-s − 1.02·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 48552 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 48552 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(48552\)    =    \(2^{3} \cdot 3 \cdot 7 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(387.689\)
Root analytic conductor: \(19.6898\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 48552,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.009749721\)
\(L(\frac12)\) \(\approx\) \(2.009749721\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 + T \)
17 \( 1 \)
good5 \( 1 + T + p T^{2} \) 1.5.b
11 \( 1 - T + p T^{2} \) 1.11.ab
13 \( 1 - T + p T^{2} \) 1.13.ab
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 5 T + p T^{2} \) 1.37.af
41 \( 1 + 12 T + p T^{2} \) 1.41.m
43 \( 1 - 7 T + p T^{2} \) 1.43.ah
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + T + p T^{2} \) 1.53.b
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 - T + p T^{2} \) 1.67.ab
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 + 5 T + p T^{2} \) 1.73.f
79 \( 1 + 11 T + p T^{2} \) 1.79.l
83 \( 1 - 9 T + p T^{2} \) 1.83.aj
89 \( 1 - 9 T + p T^{2} \) 1.89.aj
97 \( 1 - 3 T + p T^{2} \) 1.97.ad
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.62275006658415, −13.93242966778368, −13.60316896188962, −13.13704406085120, −12.51779833162435, −11.86841114017425, −11.66960961245564, −10.92077756605666, −10.38582433591250, −9.674865039747972, −9.422640701868822, −8.828270184905979, −8.185447953068350, −7.636808885991206, −7.343230753201942, −6.579815838914044, −5.944000406004841, −5.473727078784092, −4.613083425288164, −3.936670623371556, −3.600399829931582, −2.941448925115027, −2.124902933562293, −1.481617272652022, −0.4813114648659565, 0.4813114648659565, 1.481617272652022, 2.124902933562293, 2.941448925115027, 3.600399829931582, 3.936670623371556, 4.613083425288164, 5.473727078784092, 5.944000406004841, 6.579815838914044, 7.343230753201942, 7.636808885991206, 8.185447953068350, 8.828270184905979, 9.422640701868822, 9.674865039747972, 10.38582433591250, 10.92077756605666, 11.66960961245564, 11.86841114017425, 12.51779833162435, 13.13704406085120, 13.60316896188962, 13.93242966778368, 14.62275006658415

Graph of the $Z$-function along the critical line