Properties

Label 2-48552-1.1-c1-0-25
Degree $2$
Conductor $48552$
Sign $-1$
Analytic cond. $387.689$
Root an. cond. $19.6898$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2·5-s + 7-s + 9-s + 2·13-s − 2·15-s − 21-s − 25-s − 27-s − 2·29-s − 8·31-s + 2·35-s + 6·37-s − 2·39-s + 6·41-s + 4·43-s + 2·45-s + 49-s + 14·53-s − 8·59-s − 14·61-s + 63-s + 4·65-s + 4·67-s − 8·71-s − 10·73-s + 75-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.894·5-s + 0.377·7-s + 1/3·9-s + 0.554·13-s − 0.516·15-s − 0.218·21-s − 1/5·25-s − 0.192·27-s − 0.371·29-s − 1.43·31-s + 0.338·35-s + 0.986·37-s − 0.320·39-s + 0.937·41-s + 0.609·43-s + 0.298·45-s + 1/7·49-s + 1.92·53-s − 1.04·59-s − 1.79·61-s + 0.125·63-s + 0.496·65-s + 0.488·67-s − 0.949·71-s − 1.17·73-s + 0.115·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 48552 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 48552 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(48552\)    =    \(2^{3} \cdot 3 \cdot 7 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(387.689\)
Root analytic conductor: \(19.6898\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 48552,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 - T \)
17 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 14 T + p T^{2} \) 1.53.ao
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 16 T + p T^{2} \) 1.83.q
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.76286500458865, −14.24988315980789, −13.79815408600460, −13.16715688251758, −12.88712563485588, −12.28947115939984, −11.53455582062971, −11.30905000757613, −10.60835261662634, −10.28148587020334, −9.633057790320234, −9.012646577941604, −8.785759417078545, −7.677817805241622, −7.548219540043329, −6.734925162346707, −6.005277466498207, −5.784536242270535, −5.279320348813732, −4.396255433607748, −4.049072849411868, −3.117393394104462, −2.363342292608168, −1.670978730684775, −1.092083191169642, 0, 1.092083191169642, 1.670978730684775, 2.363342292608168, 3.117393394104462, 4.049072849411868, 4.396255433607748, 5.279320348813732, 5.784536242270535, 6.005277466498207, 6.734925162346707, 7.548219540043329, 7.677817805241622, 8.785759417078545, 9.012646577941604, 9.633057790320234, 10.28148587020334, 10.60835261662634, 11.30905000757613, 11.53455582062971, 12.28947115939984, 12.88712563485588, 13.16715688251758, 13.79815408600460, 14.24988315980789, 14.76286500458865

Graph of the $Z$-function along the critical line