Properties

Label 2-220e2-1.1-c1-0-5
Degree $2$
Conductor $48400$
Sign $1$
Analytic cond. $386.475$
Root an. cond. $19.6589$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 9-s − 6·13-s − 6·17-s − 6·23-s − 4·27-s − 4·31-s + 2·37-s − 12·39-s + 12·41-s − 12·43-s + 6·47-s − 7·49-s − 12·51-s − 6·53-s − 14·67-s − 12·69-s − 6·73-s + 12·79-s − 11·81-s − 12·83-s + 6·89-s − 8·93-s + 10·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  + 1.15·3-s + 1/3·9-s − 1.66·13-s − 1.45·17-s − 1.25·23-s − 0.769·27-s − 0.718·31-s + 0.328·37-s − 1.92·39-s + 1.87·41-s − 1.82·43-s + 0.875·47-s − 49-s − 1.68·51-s − 0.824·53-s − 1.71·67-s − 1.44·69-s − 0.702·73-s + 1.35·79-s − 1.22·81-s − 1.31·83-s + 0.635·89-s − 0.829·93-s + 1.01·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 48400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 48400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(48400\)    =    \(2^{4} \cdot 5^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(386.475\)
Root analytic conductor: \(19.6589\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 48400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.328613366\)
\(L(\frac12)\) \(\approx\) \(1.328613366\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
11 \( 1 \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 12 T + p T^{2} \) 1.41.am
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 14 T + p T^{2} \) 1.67.o
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.49872135838623, −14.21335762072932, −13.56949659519476, −13.11716613625848, −12.64004484417628, −12.01470920735223, −11.52716767715212, −10.92933593503705, −10.28129931941351, −9.681213011645336, −9.362555639205994, −8.797660721477533, −8.298158877897307, −7.576783845825524, −7.451945115287870, −6.609726150543681, −6.035247898925175, −5.315257203465292, −4.500584649519306, −4.263188149597764, −3.334172719817250, −2.811983503141930, −2.117865065097744, −1.828895596470555, −0.3426772032242629, 0.3426772032242629, 1.828895596470555, 2.117865065097744, 2.811983503141930, 3.334172719817250, 4.263188149597764, 4.500584649519306, 5.315257203465292, 6.035247898925175, 6.609726150543681, 7.451945115287870, 7.576783845825524, 8.298158877897307, 8.797660721477533, 9.362555639205994, 9.681213011645336, 10.28129931941351, 10.92933593503705, 11.52716767715212, 12.01470920735223, 12.64004484417628, 13.11716613625848, 13.56949659519476, 14.21335762072932, 14.49872135838623

Graph of the $Z$-function along the critical line