Properties

Label 2-47808-1.1-c1-0-37
Degree $2$
Conductor $47808$
Sign $1$
Analytic cond. $381.748$
Root an. cond. $19.5383$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·5-s + 4·7-s + 4·11-s + 2·13-s − 6·17-s + 2·19-s + 8·23-s + 11·25-s − 6·29-s − 8·31-s + 16·35-s + 2·37-s + 6·41-s − 2·43-s + 12·47-s + 9·49-s + 4·53-s + 16·55-s + 12·59-s − 2·61-s + 8·65-s + 10·67-s + 8·71-s + 14·73-s + 16·77-s + 6·79-s − 83-s + ⋯
L(s)  = 1  + 1.78·5-s + 1.51·7-s + 1.20·11-s + 0.554·13-s − 1.45·17-s + 0.458·19-s + 1.66·23-s + 11/5·25-s − 1.11·29-s − 1.43·31-s + 2.70·35-s + 0.328·37-s + 0.937·41-s − 0.304·43-s + 1.75·47-s + 9/7·49-s + 0.549·53-s + 2.15·55-s + 1.56·59-s − 0.256·61-s + 0.992·65-s + 1.22·67-s + 0.949·71-s + 1.63·73-s + 1.82·77-s + 0.675·79-s − 0.109·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 47808 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 47808 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(47808\)    =    \(2^{6} \cdot 3^{2} \cdot 83\)
Sign: $1$
Analytic conductor: \(381.748\)
Root analytic conductor: \(19.5383\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 47808,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(6.132034808\)
\(L(\frac12)\) \(\approx\) \(6.132034808\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
83 \( 1 + T \)
good5 \( 1 - 4 T + p T^{2} \) 1.5.ae
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
89 \( 1 + 4 T + p T^{2} \) 1.89.e
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.40021161631272, −14.13320917387039, −13.62332390815200, −13.09811405281652, −12.75293881765776, −11.92450400962766, −11.20279428051853, −10.98132736586849, −10.70186236300950, −9.636358940106619, −9.329238097622300, −8.900075955919158, −8.530015736241336, −7.624473643664474, −6.935873208801501, −6.638969898879048, −5.860148820984525, −5.325792032981029, −5.032864777518640, −4.151636205421127, −3.658411766788967, −2.382410633103923, −2.217957880230247, −1.350114848241906, −1.006088138735066, 1.006088138735066, 1.350114848241906, 2.217957880230247, 2.382410633103923, 3.658411766788967, 4.151636205421127, 5.032864777518640, 5.325792032981029, 5.860148820984525, 6.638969898879048, 6.935873208801501, 7.624473643664474, 8.530015736241336, 8.900075955919158, 9.329238097622300, 9.636358940106619, 10.70186236300950, 10.98132736586849, 11.20279428051853, 11.92450400962766, 12.75293881765776, 13.09811405281652, 13.62332390815200, 14.13320917387039, 14.40021161631272

Graph of the $Z$-function along the critical line