Properties

Label 2-47775-1.1-c1-0-17
Degree $2$
Conductor $47775$
Sign $1$
Analytic cond. $381.485$
Root an. cond. $19.5316$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s − 4-s + 6-s − 3·8-s + 9-s − 5·11-s − 12-s + 13-s − 16-s + 7·17-s + 18-s + 19-s − 5·22-s − 8·23-s − 3·24-s + 26-s + 27-s − 6·29-s − 31-s + 5·32-s − 5·33-s + 7·34-s − 36-s + 10·37-s + 38-s + 39-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s − 1/2·4-s + 0.408·6-s − 1.06·8-s + 1/3·9-s − 1.50·11-s − 0.288·12-s + 0.277·13-s − 1/4·16-s + 1.69·17-s + 0.235·18-s + 0.229·19-s − 1.06·22-s − 1.66·23-s − 0.612·24-s + 0.196·26-s + 0.192·27-s − 1.11·29-s − 0.179·31-s + 0.883·32-s − 0.870·33-s + 1.20·34-s − 1/6·36-s + 1.64·37-s + 0.162·38-s + 0.160·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 47775 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 47775 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(47775\)    =    \(3 \cdot 5^{2} \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(381.485\)
Root analytic conductor: \(19.5316\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 47775,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.180102002\)
\(L(\frac12)\) \(\approx\) \(2.180102002\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 - T \)
5 \( 1 \)
7 \( 1 \)
13 \( 1 - T \)
good2 \( 1 - T + p T^{2} \) 1.2.ab
11 \( 1 + 5 T + p T^{2} \) 1.11.f
17 \( 1 - 7 T + p T^{2} \) 1.17.ah
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + T + p T^{2} \) 1.31.b
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 5 T + p T^{2} \) 1.61.af
67 \( 1 + 13 T + p T^{2} \) 1.67.n
71 \( 1 - 15 T + p T^{2} \) 1.71.ap
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + 3 T + p T^{2} \) 1.83.d
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.44986341432843, −13.93346678157687, −13.70574670428360, −13.03042972917097, −12.74923947022969, −12.11109099337362, −11.77302940401320, −10.89243214589129, −10.31723657623504, −9.863535376369196, −9.437277043329379, −8.766989018432734, −8.114584880164213, −7.762180012997775, −7.388618592420434, −6.287327638677190, −5.743447128695097, −5.441387749185004, −4.746212537238711, −4.064921291805683, −3.568806228329295, −2.972007495252965, −2.405836322128252, −1.493595381867953, −0.4469956083550120, 0.4469956083550120, 1.493595381867953, 2.405836322128252, 2.972007495252965, 3.568806228329295, 4.064921291805683, 4.746212537238711, 5.441387749185004, 5.743447128695097, 6.287327638677190, 7.388618592420434, 7.762180012997775, 8.114584880164213, 8.766989018432734, 9.437277043329379, 9.863535376369196, 10.31723657623504, 10.89243214589129, 11.77302940401320, 12.11109099337362, 12.74923947022969, 13.03042972917097, 13.70574670428360, 13.93346678157687, 14.44986341432843

Graph of the $Z$-function along the critical line