Properties

Label 47775.cx
Number of curves $1$
Conductor $47775$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cx1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 47775.cx1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 - T\)
\(5\)\(1\)
\(7\)\(1\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(11\) \( 1 + 5 T + 11 T^{2}\) 1.11.f
\(17\) \( 1 - 7 T + 17 T^{2}\) 1.17.ah
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 47775.cx do not have complex multiplication.

Modular form 47775.2.a.cx

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{3} - q^{4} + q^{6} - 3 q^{8} + q^{9} - 5 q^{11} - q^{12} + q^{13} - q^{16} + 7 q^{17} + q^{18} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 47775.cx

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
47775.cx1 47775db1 \([1, 0, 1, 2424, 13423]\) \(1680455/1053\) \(-987598828125\) \([]\) \(86400\) \(0.99061\) \(\Gamma_0(N)\)-optimal