Properties

Label 2-43350-1.1-c1-0-42
Degree $2$
Conductor $43350$
Sign $-1$
Analytic cond. $346.151$
Root an. cond. $18.6051$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 6-s − 4·7-s − 8-s + 9-s + 4·11-s − 12-s + 2·13-s + 4·14-s + 16-s − 18-s − 4·19-s + 4·21-s − 4·22-s − 4·23-s + 24-s − 2·26-s − 27-s − 4·28-s − 2·29-s − 4·31-s − 32-s − 4·33-s + 36-s − 6·37-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s − 1.51·7-s − 0.353·8-s + 1/3·9-s + 1.20·11-s − 0.288·12-s + 0.554·13-s + 1.06·14-s + 1/4·16-s − 0.235·18-s − 0.917·19-s + 0.872·21-s − 0.852·22-s − 0.834·23-s + 0.204·24-s − 0.392·26-s − 0.192·27-s − 0.755·28-s − 0.371·29-s − 0.718·31-s − 0.176·32-s − 0.696·33-s + 1/6·36-s − 0.986·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 43350 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 43350 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(43350\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(346.151\)
Root analytic conductor: \(18.6051\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 43350,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 \)
17 \( 1 \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 4 T + p T^{2} \) 1.71.ae
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 18 T + p T^{2} \) 1.97.as
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.94624032407187, −14.61788915276389, −13.85217284918695, −13.26355712238266, −12.77977196809899, −12.29842635954041, −11.80925965520651, −11.29999306224882, −10.59624935142215, −10.31210762823745, −9.641887911668948, −9.190714325982043, −8.818071254562338, −8.117507026897114, −7.313663204143508, −6.860140977238800, −6.275971740603037, −6.088437144965171, −5.364088925378243, −4.344050281517369, −3.745819758990863, −3.365422427924331, −2.333855853766632, −1.668661509520086, −0.7569552069784493, 0, 0.7569552069784493, 1.668661509520086, 2.333855853766632, 3.365422427924331, 3.745819758990863, 4.344050281517369, 5.364088925378243, 6.088437144965171, 6.275971740603037, 6.860140977238800, 7.313663204143508, 8.117507026897114, 8.818071254562338, 9.190714325982043, 9.641887911668948, 10.31210762823745, 10.59624935142215, 11.29999306224882, 11.80925965520651, 12.29842635954041, 12.77977196809899, 13.26355712238266, 13.85217284918695, 14.61788915276389, 14.94624032407187

Graph of the $Z$-function along the critical line