Properties

Label 2-4290-1.1-c1-0-70
Degree $2$
Conductor $4290$
Sign $-1$
Analytic cond. $34.2558$
Root an. cond. $5.85284$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 5-s − 6-s + 2·7-s + 8-s + 9-s − 10-s + 11-s − 12-s − 13-s + 2·14-s + 15-s + 16-s − 4·17-s + 18-s − 2·19-s − 20-s − 2·21-s + 22-s − 6·23-s − 24-s + 25-s − 26-s − 27-s + 2·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s + 0.755·7-s + 0.353·8-s + 1/3·9-s − 0.316·10-s + 0.301·11-s − 0.288·12-s − 0.277·13-s + 0.534·14-s + 0.258·15-s + 1/4·16-s − 0.970·17-s + 0.235·18-s − 0.458·19-s − 0.223·20-s − 0.436·21-s + 0.213·22-s − 1.25·23-s − 0.204·24-s + 1/5·25-s − 0.196·26-s − 0.192·27-s + 0.377·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4290 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4290 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4290\)    =    \(2 \cdot 3 \cdot 5 \cdot 11 \cdot 13\)
Sign: $-1$
Analytic conductor: \(34.2558\)
Root analytic conductor: \(5.85284\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4290,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
5 \( 1 + T \)
11 \( 1 - T \)
13 \( 1 + T \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.85910854469801354055166838410, −7.17563160703525469695292717828, −6.49174702699529887495181658612, −5.69931794589951415457530314413, −5.00129204255719823467153265490, −4.24350811964832086627244025926, −3.73708427116541987267573822017, −2.39516631205908498166305694977, −1.57874510492159313197613078049, 0, 1.57874510492159313197613078049, 2.39516631205908498166305694977, 3.73708427116541987267573822017, 4.24350811964832086627244025926, 5.00129204255719823467153265490, 5.69931794589951415457530314413, 6.49174702699529887495181658612, 7.17563160703525469695292717828, 7.85910854469801354055166838410

Graph of the $Z$-function along the critical line